IR LYGTAIS DAUG KO NEREIKIA DARYTI KAS RAŠOMA ŽEMIAU
- Na, o visi realieji sprendiniai yra šie:
- Tarkime, kai q=1 ir p=1. Tada:

- Įstatome dabar į lygtį
reikšmę
ir gauname:
- Bet reikėjo daryti ne taip. Iš pradžiu reikia parinkti visas a, b, c reikšmes, kurias parenkame, kad a=1, b=1, c=1. Tada įstatome jas čia:

- ir gauname:

- Dabar šias reikšmes įstatome į formulę
![{\displaystyle x_{0}=\alpha +\beta ={\sqrt[{3}]{{\frac {1}{2}}\cdot (-q+{\sqrt {q^{2}+{\frac {4p^{3}}{27}}}})}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-q-{\sqrt {q^{2}+{\frac {4p^{3}}{27}}}})}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5425b02f9e2d1c4a6a78a6629a71996a587ab94c)
![{\displaystyle ={\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}+{\sqrt {({\frac {18}{29}})^{2}+{\frac {4({\frac {18}{29}})^{3}}{27}}}})}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}-{\sqrt {({\frac {18}{29}})^{2}+{\frac {4({\frac {18}{29}})^{3}}{27}}}})}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84ac0e4ebeb1cd331829509431cd13f618252eaa)
![{\displaystyle ={\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}+{\sqrt {({\frac {18}{29}})^{2}+{\frac {0.956496781}{27}}}})}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}-{\sqrt {({\frac {18}{29}})^{2}+{\frac {0.956496781}{27}}}})}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79034eebbf885770514ece367ffd3637e852d614)
![{\displaystyle ={\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}+{\sqrt {({\frac {18}{29}})^{2}+0.035425806}})}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}-{\sqrt {({\frac {18}{29}})^{2}+0.035425806}})}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3bd9e6aa64249ce904d8258044948306b0e8bd4)
![{\displaystyle ={\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}+{\sqrt {0.420681454}})}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}-{\sqrt {0.420681454}})}}={\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}+0.64859961)}}+{\sqrt[{3}]{{\frac {1}{2}}\cdot (-{\frac {18}{29}}-0.64859961)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c17df5dbbd3813471d71106fedb1bc68b397c2c)
![{\displaystyle ={\sqrt[{3}]{0.013954977}}+{\sqrt[{3}]{-1.269289265}}=0.240755587-1.08273008=-0.841974493.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4e93453b8ff3aac896de618c00d1a9931afa99)
- Įstatome šią
reikšmę į lygtį
ir gauname (a nepasikeite ir todel a=1):

- Toliau belieka y įstatyti į pradinę lygtį:

- Gali būti, kad lygtis su tokiais koeficientais, kai visi koeficientai vienetai, turi tik kompleksinių skaičių sprendinius.
- Dabar įstatome
reikšmę į lygtį
ir pasirenkame koeficientus p=1, q=1 ir gauname:

Be abejonės, kubinės lygties sprendiniai atspėti, o tik pavaidinta, kad išspresta, nebent pagal Vijeto teoremą, jei
, tai
iš čia,
gaunasi
"Vijeto formulės kvadratiniam polinomui
ir jo šaknims
kvadratinėje lygtyje
yra

Pavyzdžiui, jei turime kvadratinę lygtį

ją išspręsti galime pasinaudoję Vijeto teorema ir sudarę lygčių sistemą

Jei šią sistemą bandytume spręsti formaliai (pvz., išsireikšdami vieną iš kintamųjų), vėl gautume tą pačią lygtį. Praktikoje, naudojant Vijeto teoremą lygčių sprendimui, sprendinius x1 ir x2 bandoma „atspėti“ - sugalvoti tokius x1 ir x2, kad jie tenkintų lygčių sistemą. Šiuo atveju sprendiniai yra -2 ir 3.
Vijeto formulės kubiniam polinomui
ir jo šaknims
lygtyje
yra
"
Pilnosios kūbinės lygties
šaknys yra šios:
![{\displaystyle {\begin{aligned}x_{1}=&-{\frac {b}{3a}}\\&-{\frac {1}{3a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d+{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\\&-{\frac {1}{3a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\\x_{2}=&-{\frac {b}{3a}}\\&+{\frac {1+i{\sqrt {3}}}{6a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d+{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\\&+{\frac {1-i{\sqrt {3}}}{6a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\\x_{3}=&-{\frac {b}{3a}}\\&+{\frac {1-i{\sqrt {3}}}{6a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d+{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\\&+{\frac {1+i{\sqrt {3}}}{6a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49ca47638af5e9d4c062420c03a61b60273c1abe)
- Realiosios šaknys yra blogos, jei po šia šaknimi
gaunamas skaičius su minusu.
- Pavyzdis. Rasime nepilnos kubinės lygties
realiasias šaknis, kurios
,
,
ir
. Randame sprendinį:
![{\displaystyle x_{1}=-{\frac {b}{3a}}-{\frac {1}{3a}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2b^{3}-9abc+27a^{2}d+{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right)}}-}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a917ad068bfc86a051a227f4bf0887bb7eb5ff)
![{\displaystyle -{\frac {1}{3a}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4271b47f6f9beb206c52f9419f329c9bd403551)
![{\displaystyle =-{\frac {0}{3}}-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2\cdot 0^{3}-0+27\cdot 9+{\sqrt {\left(2\cdot 0^{3}-0+27\cdot 9\right)^{2}-4\left(0^{2}-3\cdot (-6)\right)^{3}}}\right)}}-}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e90925a9a4e3f05872df667b2a1937edf699ef6c)
![{\displaystyle -{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2\cdot 0^{3}-0+27\cdot 9-{\sqrt {\left(2\cdot 0^{3}-0+27\cdot 9\right)^{2}-4(0^{2}-3\cdot (-6))^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5b8394dc33f1eb15beb889f96aaa5dc5a501c56)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243+{\sqrt {243^{2}-4\cdot 18^{3}}}\right)}}-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243-{\sqrt {243^{2}-4\cdot 18^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00cbdf4f132820c7f92a1fba11d37d6b1ee7119e)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243+{\sqrt {59049-23328}}\right)}}-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243-{\sqrt {59049-23328}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4f97005b7e6ea3c1cc3b5c506d600f3fac4da7f)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243+{\sqrt {35721}}\right)}}-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243-{\sqrt {35721}}\right)}}=-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243+189\right)}}-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(243-189\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2420326919fb67f3973692ea9e32de9dcbfa08)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{216}}-{\frac {1}{3}}{\sqrt[{3}]{54}}=-{\frac {1}{3}}\cdot 6-{\frac {1}{3}}\cdot 3{\sqrt[{3}]{2}}=-2-{\sqrt[{3}]{2}}=-3.25992105.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e97a39a3bf13ee06a71aa92693be73d7eda0d2d)
- Patikriname ar sprendinys teisingas:
- Pavyzdis. Rasime pilnosios kubinės lygties
realiasias šaknis, kurios
,
,
ir
. Randame sprendinį:
![{\displaystyle x_{2}=-{\frac {1}{3a}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24c94579a293dab3f26e25e987aa829594b768e1)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2\cdot 3^{3}-9\cdot 3\cdot (-3)+27\cdot 1^{2}\cdot (-14)-{\sqrt {\left(2\cdot 3^{3}-9\cdot 3\cdot (-3)+27\cdot 1^{2}\cdot (-14)\right)^{2}-4\left(3^{2}-3\cdot (-3)\right)^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f8be5a4acc9c03dec881c6ab0dd05e364c551f2)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(2\cdot 9-9\cdot (-9)+27\cdot (-14)-{\sqrt {\left(2\cdot 27-9\cdot (-9)+27\cdot (-14)\right)^{2}-4\left(9+9\right)^{3}}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/210824fb27fc129305d0d8cee993823f6916dfdf)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(18+81-378-{\sqrt {(54+81-378)^{2}-4\cdot 18^{3}}}\right)}}=-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(99-378-{\sqrt {(135-378)^{2}-4\cdot 5832}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99a22938450e75695b7b495a6579d24c3050d1fc)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(-279-{\sqrt {(-243)^{2}-23328}}\right)}}=-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(-279-{\sqrt {59049-23328}}\right)}}=-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(-279-{\sqrt {35721}}\right)}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08b45145c8f868280de11921a6e1eec10dcecfa2)
![{\displaystyle =-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot \left(-279-189\right)}}=-{\frac {1}{3}}{\sqrt[{3}]{{\frac {1}{2}}\cdot (-468)}}=-{\frac {1}{3}}{\sqrt[{3}]{-234}}={\frac {6.162240148}{3}}=2.054080049.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/06dd7dcfe8ee098a2c680d91e08d8674e6e967e3)
![{\displaystyle \left({\frac {\sqrt[{3}]{-234}}{3}}\right)^{3}+3\left({\frac {\sqrt[{3}]{-234}}{3}}\right)^{2}-3\left({\frac {\sqrt[{3}]{-234}}{3}}\right)-14=1.162161065.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42249381d18bfd3d8b6751c2df30844014dbb031)
- Pataisymas.
reikia skaičiuot taip:
![{\displaystyle x_{1}=-{\frac {b}{3a}}-{\frac {1}{3a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d+{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}-{\frac {1}{3a}}{\sqrt[{3}]{{\tfrac {1}{2}}\left[2b^{3}-9abc+27a^{2}d-{\sqrt {\left(2b^{3}-9abc+27a^{2}d\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}\right]}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72e8fb338fc7ded2bdc0498912969861c864e3d5)