Kreivio skaičiavimas be evoliutės ir evolventės neturi prasmės. Kreivis susijęs su jų spinduliu. Rusiškai kreivis vadinasi кривизна .
Vaizdas:Kreivispav139.jpg 139 pav.
Vaizdas:Kreivispav140.jpg 140 pav.
Vienas iš elementų, charakterizuojančių formą kreivės, yra laipsnis jos išlinkimo, išsilenkimo.
Tegu mes turime kreivę, kuri nekerta pati savęs ir turi tam tikrą liestinę kiekviename taške. Pravesime liestines prie kreivės kokiuose nors dviejuose jos taškuose A ir B ir pažymėsime per
α
{\displaystyle \alpha }
kampą, padarytąšitomis liestinėmis, arba - tiksliau - kampą pasisukimo liestinės pereinant iš taško A į tašką B (139 pav.). Šitas kampas vadinasi kreivumo kampu (углом смежности ) lanko AB . Pas du lankus, turinčius vienodą ilgį, daugiau išlinkęs tas lankas, pas kurią kreivumo kampas didesnis (139 ir 140 pav.).
Iš kitos pusės, nagrinėjant lankus skirtingo ilgio, mes negalime įvertinti laipsnį jų išlinkimo tiktai atitinkančiu kreivumo kampu. Iš čia seka, kad pilna charakteristika išlinkimo kreivės bus santykis kreivumo kampo su ilgiu atitinkančios tiesės.
Apibrėžimas 1. Vidutiniu kreiviu
K
v
i
d
{\displaystyle K_{vid}}
lanko
A
B
˘
{\displaystyle {\breve {AB}}}
vadinasi santykis kreivumo kampo
α
{\displaystyle \alpha }
su ilgiu lanko:
K
v
i
d
=
α
A
B
˘
.
{\displaystyle K_{vid}={\frac {\alpha }{\breve {AB}}}.}
Vaizdas:Kreivispav141.jpg 141 pav.
Vienai ir tai pačiai kreivei vidutinis kreivis jos skirtingų dalių (lankų) gali būti skirtingas; pavyzdžiui, kreivei parodytai paveiksle 141, vidutinis kreivis lanko
A
B
˘
{\displaystyle {\breve {AB}}}
nelygus vidutiniui kreiviui lanko
A
1
B
1
˘
,
{\displaystyle {\breve {A_{1}B_{1}}},}
nors ilgiai šitų lankų lygūs tarpusavyje. Be to, arti prie skirtingų taškų kreivė išlenkta skirtingai. Tam, kad charakterizuoti išlinkimo laipsnį duotos linijos betarpiškai arti prie duoto taško A , įvesime apibrėžimą kreivio kreivės duotame taške.
Apibrėžimas 2. Kreiviu
K
A
{\displaystyle K_{A}}
linijos duotame taške A vadinasi riba vidutinio kreivio lanko
A
B
˘
,
{\displaystyle {\breve {AB}},}
kada ilgis šito lanko artėja prie nulio (t. y. kada taškas B artėja (mes tariam, kad dydis ribos nepriklauso nuo to, iš kokios pusės nuo taško A mes imame kintamą tašką B ant kreivės) prie taško A ):
K
A
=
lim
B
→
A
K
v
i
d
=
lim
A
B
→
0
=
α
A
B
˘
.
{\displaystyle K_{A}=\lim _{B\to A}K_{vid}=\lim _{AB\to 0}={\frac {\alpha }{\breve {AB}}}.}
Pastaba . Pažymėsime, kad betkokiai kreivei kreivis skirtingose jos taškuose, bus skirtingas. Tai mes pamatysime žemiau.
Vaizdas:Kreivispav142.jpg 142 pav.
Apskritimui spindulio r : 1) nustatyti vidutinį kreivį lanko AB , atitinkantį centriam kamui
α
{\displaystyle \alpha }
(142 pav.); 2) nustatyti kreivį taške A .
Sprendimas . 1) Akivaizdu, kad kreivumo kampas lanko
A
B
˘
{\displaystyle {\breve {AB}}}
lygus
α
{\displaystyle \alpha }
, ilgis lanko lygus
α
r
{\displaystyle \alpha r}
. Todėl,
K
v
i
d
=
α
α
r
,
{\displaystyle K_{vid}={\frac {\alpha }{\alpha r}},}
arba
K
v
i
d
=
1
r
.
{\displaystyle K_{vid}={\frac {1}{r}}.}
2) Kreivis taške A lygus
K
=
lim
α
→
0
α
α
r
=
1
r
.
{\displaystyle K=\lim _{\alpha \to 0}{\frac {\alpha }{\alpha r}}={\frac {1}{r}}.}
Tokiu budu, vidutinis kreivis lanko apskritimo spindulio r nepriklauso nuo ilgio ir padeties lanko, visiems lankams jis lygus
1
r
.
{\displaystyle {\frac {1}{r}}.}
Kreivis apskritimo betkokiame jo taške taip pat nepriklauso nuo pasirinkimo šito taško ir lygus
1
r
.
{\displaystyle {\frac {1}{r}}.}
Kreivio apskaičiavimas[ keisti ]
Įvesime formulę apskaičiavimui kreivio duotos linijos betkokiame jos taške
M
(
x
;
y
)
{\displaystyle M(x;y)}
. Be to mes tarsime, kad kreivė užrašyta dekardo koordinačių sistemmoje lygtimi pavidalo
y
=
f
(
x
)
(
1
)
{\displaystyle y=f(x)\quad (1)}
ir kad funkcija
f
(
x
)
{\displaystyle f(x)\;}
turi netrūkią antrą išvestinę.
Vaizdas:Kreivispav143.jpg 143 pav.
Pravesime liestines kreivės taškuose M ir
M
1
{\displaystyle M_{1}}
su abscisėmis x ir
x
+
Δ
x
{\displaystyle x+\Delta x}
ir pažymėsime per
ϕ
{\displaystyle \phi }
ir
ϕ
+
Δ
ϕ
{\displaystyle \phi +\Delta \phi }
palinkimo kampus šitų liestinių (143 pav.).
Ilgį kreivės
M
0
M
˘
,
{\displaystyle {\breve {M_{0}M}},}
atskaičiuojamos nuo tam tikro pastovaus taško
M
0
{\displaystyle M_{0}}
, pažymėsime per s ; tada
Δ
s
=
M
0
M
1
˘
−
M
0
M
˘
,
{\displaystyle \Delta s={\breve {M_{0}M_{1}}}-{\breve {M_{0}M}},}
o
|
Δ
s
|
=
M
M
1
˘
.
{\displaystyle |\Delta s|={\breve {MM_{1}}}.}
Kaip betarpiškai matosi iš pav. 143, gretimumo kampas, atitinkantis lankui
M
M
1
˘
{\displaystyle {\breve {MM_{1}}}}
, lygūs absoliučiam dydžiui (kreivei, pavaizduotai paveiksle 143, akivaizdu, kad
|
Δ
ϕ
|
=
Δ
ϕ
,
{\displaystyle |\Delta \phi |=\Delta \phi ,}
kadangi
Δ
ϕ
>
0
{\displaystyle \Delta \phi >0}
) skirtumo kampų
ϕ
{\displaystyle \phi }
ir
ϕ
+
Δ
ϕ
,
{\displaystyle \phi +\Delta \phi ,}
t. y. lygus
|
Δ
ϕ
|
.
{\displaystyle |\Delta \phi |.}
Pagal apibrėžimą vidutinio kreivio kreivės srityje
M
M
1
{\displaystyle MM_{1}}
turime:
K
v
i
d
=
|
Δ
ϕ
|
|
Δ
s
|
=
|
Δ
ϕ
Δ
s
|
.
{\displaystyle K_{vid}={\frac {|\Delta \phi |}{|\Delta s|}}=\left|{\frac {\Delta \phi }{\Delta s}}\right|.}
Kad gauti kreivį taške M , reikia rasti ribą gautos išraiškos su sąlyga, kad ilgis lanko
M
M
1
˘
{\displaystyle {\breve {MM_{1}}}}
artėja prie nulio:
K
=
lim
Δ
s
→
0
=
|
Δ
ϕ
Δ
s
|
.
{\displaystyle K=\lim _{\Delta s\to 0}=\left|{\frac {\Delta \phi }{\Delta s}}\right|.}
Kadangi dydžiai
ϕ
{\displaystyle \phi }
ir s abu priklauso nuo x (yra funkcijos nuo x ), tai, dėl to,
ϕ
{\displaystyle \phi }
galima nagrinėti kaip funkciją nuo s . Mes galime laikyti, kad šita funkcija užduota parametriškai su x parametro pagalba. Tada
lim
Δ
s
→
0
=
Δ
ϕ
Δ
s
=
d
ϕ
d
s
{\displaystyle \lim _{\Delta s\to 0}={\frac {\Delta \phi }{\Delta s}}={\frac {d\phi }{ds}}}
ir, todėl,
K
=
|
d
ϕ
d
s
|
(
2
)
.
{\displaystyle K=\left|{\frac {d\phi }{ds}}\right|\quad (2).}
Skaičiavimui
d
ϕ
d
s
{\displaystyle {\frac {d\phi }{ds}}}
panaudojame formulę diferencijavimo funkcijos, užduotos parametriškai:
d
ϕ
d
s
=
d
ϕ
d
x
d
s
d
x
.
{\displaystyle {\frac {d\phi }{ds}}={\frac {\frac {d\phi }{dx}}{\frac {ds}{dx}}}.}
Kad išreikšti išvestinę
d
ϕ
d
x
{\displaystyle {\frac {d\phi }{dx}}}
per funkciją
y
=
f
(
x
)
,
{\displaystyle y=f(x),\;}
pastebime, kad
tan
ϕ
=
d
y
d
x
{\displaystyle \tan \phi ={\frac {dy}{dx}}}
ir, todėl,
ϕ
=
arctan
d
y
d
x
.
{\displaystyle \phi =\arctan {\frac {dy}{dx}}.}
Diferencijuodami pagal x paskutinę lygybę, turėsime:
d
ϕ
d
x
=
d
(
arctan
d
y
d
x
)
d
x
=
d
2
y
d
x
2
1
+
(
d
y
d
x
)
2
.
{\displaystyle {\frac {d\phi }{dx}}={\frac {d(\arctan {\frac {dy}{dx}})}{dx}}={\frac {\frac {d^{2}y}{dx^{2}}}{1+\left({\frac {dy}{dx}}\right)^{2}}}.}
(Arba
ϕ
′
(
x
)
=
(
arctan
(
y
′
)
)
′
=
y
″
1
+
(
y
′
)
2
.
{\displaystyle \phi '(x)=(\arctan(y'))'={\frac {y''}{1+(y')^{2}}}.}
)
Kas liečia išvestinę
d
s
d
x
,
{\displaystyle {\frac {ds}{dx}},}
tai mes radome
d
s
d
x
=
1
+
(
d
y
d
x
)
2
.
{\displaystyle {\frac {ds}{dx}}={\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}.}
Todėl
d
ϕ
d
s
=
d
ϕ
d
x
d
s
d
x
=
d
2
y
d
x
2
1
+
(
d
y
d
x
)
2
1
+
(
d
y
d
x
)
2
=
d
2
y
d
x
2
[
1
+
(
d
y
d
x
)
2
]
3
2
,
{\displaystyle {\frac {d\phi }{ds}}={\frac {\frac {d\phi }{dx}}{\frac {ds}{dx}}}={\frac {\frac {\frac {d^{2}y}{dx^{2}}}{1+\left({\frac {dy}{dx}}\right)^{2}}}{\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}}={\frac {\frac {d^{2}y}{dx^{2}}}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}},}
arba, kadangi
K
=
|
d
ϕ
d
s
|
,
{\displaystyle K=\left|{\frac {d\phi }{ds}}\right|,}
galutinai gauname:
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
.
(
3
)
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}.\quad (3)}
Iš to seka, kad betkokiame taške kreivės, kur egzistuoja ir netrūki antra išvestinė
d
2
y
d
x
2
,
{\displaystyle {\frac {d^{2}y}{dx^{2}}},}
galima apskaičiuoti kreivį. Jo apskaičiavimui tarnauja formulė (3). Pastebėsime, kad skaičiuojant kreivį kreivės reikia imti tik aritmetinę (t. y. teigiamą) reikšmę šaknies vardiklyje, kadangi kreivis linijos pagal apibrėžimą negali būti neigiamas.
Nustatyti kreivį parabolės
y
2
=
2
p
x
{\displaystyle y^{2}=2px}
:
a) jos laisvai pasirenktame taške M (x; y);
b) taške
M
1
(
0
;
0
)
{\displaystyle M_{1}(0;0)}
;
c) taške
M
2
(
p
2
;
p
)
.
{\displaystyle M_{2}({\frac {p}{2}};p).}
Sprendimas . Randame pirmą ir antrą išvestines funkcijos
y
=
2
p
x
{\displaystyle y={\sqrt {2px}}}
:
d
y
d
x
=
(
2
p
x
)
′
=
(
2
p
x
)
′
2
2
p
x
=
p
2
p
x
;
d
2
y
d
x
2
=
(
p
2
p
x
)
′
=
−
p
(
2
p
x
)
′
2
(
2
p
x
)
3
2
=
−
p
2
(
2
p
x
)
3
2
.
{\displaystyle {\frac {dy}{dx}}=({\sqrt {2px}})'={\frac {(2px)'}{2{\sqrt {2px}}}}={\frac {p}{\sqrt {2px}}};\quad {\frac {d^{2}y}{dx^{2}}}=\left({\frac {p}{\sqrt {2px}}}\right)'=-{\frac {p(2px)'}{2(2px)^{3 \over 2}}}=-{\frac {p^{2}}{(2px)^{3 \over 2}}}.}
Įstatydami gautas išraiškas į formulę (3), gausime:
a)
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
−
p
2
(
2
p
x
)
3
2
|
[
1
+
(
p
2
p
x
)
2
]
3
2
=
p
2
(
2
p
x
)
3
2
[
1
+
p
2
2
p
x
]
3
2
=
p
2
(
2
p
x
+
p
2
)
3
2
;
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|-{\frac {p^{2}}{(2px)^{3 \over 2}}}\right|}{\left[1+\left({\frac {p}{\sqrt {2px}}}\right)^{2}\right]^{3 \over 2}}}={\frac {p^{2}}{(2px)^{3 \over 2}\left[1+{\frac {p^{2}}{2px}}\right]^{3 \over 2}}}={\frac {p^{2}}{(2px+p^{2})^{3 \over 2}}};}
b)
K
x
=
0
,
y
=
0
=
p
2
(
2
p
⋅
0
+
p
2
)
3
2
=
p
2
p
3
=
1
p
;
{\displaystyle K_{x=0,\;y=0}={\frac {p^{2}}{(2p\cdot 0+p^{2})^{3 \over 2}}}={\frac {p^{2}}{p^{3}}}={\frac {1}{p}};}
c)
K
x
=
p
2
,
y
=
p
=
p
2
(
2
p
⋅
p
2
+
p
2
)
3
2
=
p
2
(
2
p
2
)
3
2
=
p
2
2
3
p
3
=
1
2
2
p
.
{\displaystyle K_{x={\frac {p}{2}},\;y=p}={\frac {p^{2}}{(2p\cdot {\frac {p}{2}}+p^{2})^{3 \over 2}}}={\frac {p^{2}}{(2p^{2})^{3 \over 2}}}={\frac {p^{2}}{{\sqrt {2^{3}}}p^{3}}}={\frac {1}{2{\sqrt {2}}p}}.}
Nustatyti kreivį tiesės
y
=
a
x
+
b
{\displaystyle y=ax+b}
jos laisvai pasirinktame taške (x; y) .
Sprendimas.
y
′
=
(
a
x
+
b
)
′
=
a
,
y
″
=
a
′
=
0.
{\displaystyle y'=(ax+b)'=a,\quad y''=a'=0.}
Pasinaudojant formule (3), gauname:
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
y
″
|
[
1
+
(
y
′
)
2
]
3
2
=
|
0
|
[
1
+
a
2
]
3
2
=
0.
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|y''|}{[1+(y')^{2}]^{3 \over 2}}}={\frac {|0|}{[1+a^{2}]^{3 \over 2}}}=0.}
Tokiu budu, tiesė yra "linija nulinio kreivio". Šita gi rezultatą lengvai galima gauti betarpiškai iš kreivio apibrėžimo.
Apskaičiuokime kreivį bet kuriame grandininės linijos
y
=
a
cosh
x
a
{\displaystyle y=a\cosh {\frac {x}{a}}}
taške (hiperbolinio kosinuso formulė yra tokia
cosh
x
=
e
x
+
e
−
x
2
=
e
2
x
+
1
2
e
x
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}}
; hiperbolinio kosinuso išvestinė yra
(
cosh
x
)
′
=
sinh
x
=
e
x
−
e
−
x
2
=
e
2
x
−
1
2
e
x
{\displaystyle (\cosh x)'=\sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}}
; hiperbolinio sinuso išvestinė yra
(
sinh
x
)
′
=
cosh
x
{\displaystyle (\sinh x)'=\cosh x}
).
Kadangi
1
+
[
f
′
(
x
)
]
2
=
1
+
[
(
a
cosh
x
a
)
′
]
2
=
1
+
[
(
x
a
)
′
a
sinh
x
a
]
2
=
1
+
[
1
a
⋅
a
sinh
x
a
]
2
=
1
+
sinh
2
x
a
=
cosh
2
x
a
=
y
2
a
2
,
{\displaystyle 1+[f'(x)]^{2}=1+[(a\cosh {\frac {x}{a}})']^{2}=1+[({\frac {x}{a}})'a\sinh {\frac {x}{a}}]^{2}=1+[{\frac {1}{a}}\cdot a\sinh {\frac {x}{a}}]^{2}=1+\sinh ^{2}{\frac {x}{a}}=\cosh ^{2}{\frac {x}{a}}={\frac {y^{2}}{a^{2}}},}
f
′
(
x
)
=
(
a
cosh
x
a
)
′
=
(
x
a
)
′
a
sinh
x
a
=
1
a
⋅
a
sinh
x
a
=
sinh
x
a
,
{\displaystyle f'(x)=(a\cosh {\frac {x}{a}})'=({\frac {x}{a}})'a\sinh {\frac {x}{a}}={\frac {1}{a}}\cdot a\sinh {\frac {x}{a}}=\sinh {\frac {x}{a}},}
f
″
(
x
)
=
(
sinh
x
a
)
′
=
1
a
cosh
x
a
=
y
a
2
,
{\displaystyle f''(x)=(\sinh {\frac {x}{a}})'={\frac {1}{a}}\cosh {\frac {x}{a}}={\frac {y}{a^{2}}},}
tai kreivis yra lygus
k
=
f
″
(
x
)
[
1
+
(
f
′
(
x
)
)
2
]
3
/
2
=
1
a
cosh
x
a
[
1
+
(
sinh
x
a
)
2
]
3
/
2
=
1
a
cosh
x
a
[
cosh
2
x
a
]
3
/
2
=
y
a
2
(
y
2
a
2
)
3
/
2
=
y
a
2
y
3
a
3
=
a
3
y
a
2
y
3
=
a
y
2
=
a
a
2
cosh
2
x
a
=
1
a
cosh
2
x
a
.
{\displaystyle k={\frac {f''(x)}{[1+(f'(x))^{2}]^{3/2}}}={\frac {{\frac {1}{a}}\cosh {\frac {x}{a}}}{[1+(\sinh {\frac {x}{a}})^{2}]^{3/2}}}={\frac {{\frac {1}{a}}\cosh {\frac {x}{a}}}{[\cosh ^{2}{\frac {x}{a}}]^{3/2}}}={\frac {\frac {y}{a^{2}}}{({\frac {y^{2}}{a^{2}}})^{3/2}}}={\frac {\frac {y}{a^{2}}}{\frac {y^{3}}{a^{3}}}}={\frac {a^{3}y}{a^{2}y^{3}}}={\frac {a}{y^{2}}}={\frac {a}{a^{2}\cosh ^{2}{\frac {x}{a}}}}={\frac {1}{a\cosh ^{2}{\frac {x}{a}}}}.}
Nustatyti kreivį parabolės
y
=
x
2
{\displaystyle y=x^{2}}
taškuose
x
0
=
0
{\displaystyle x_{0}=0}
ir
x
1
=
5.
{\displaystyle x_{1}=5.}
Rasti prabolės evoliutės lanko ilgį iš taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};\;y_{2})}
iki taško
C
1
(
x
3
;
y
3
)
.
{\displaystyle C_{1}(x_{3};\;y_{3}).}
Taškas
C
0
{\displaystyle C_{0}}
yra spindulio
R
0
{\displaystyle R_{0}}
centras, o taškas
C
1
{\displaystyle C_{1}}
yra spindulio
R
2
{\displaystyle R_{2}}
centras. Spindulys
R
0
{\displaystyle R_{0}}
yra atkarpa iš taško
M
0
(
x
0
;
y
0
)
{\displaystyle M_{0}(x_{0};y_{0})}
iki taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};y_{2})}
. Spindulys
R
1
{\displaystyle R_{1}}
yra atkarpa iš taško
M
1
(
x
1
;
y
1
)
{\displaystyle M_{1}(x_{1};y_{1})}
iki taško
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};y_{3})}
.
Sprendimas .
y
′
=
(
x
2
)
′
=
2
x
,
y
″
=
(
2
x
)
′
=
2.
{\displaystyle y'=(x^{2})'=2x,\quad y''=(2x)'=2.}
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
.
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}.}
Kreivis taške
M
0
{\displaystyle M_{0}}
yra lygus:
K
M
0
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
2
(
1
+
4
⋅
0
2
)
3
2
=
2.
{\displaystyle K_{M_{0}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}={\frac {2}{(1+4\cdot 0^{2})^{3 \over 2}}}=2.}
R
0
=
1
K
M
0
=
1
2
=
0.5.
{\displaystyle R_{0}={\frac {1}{K_{M_{0}}}}={\frac {1}{2}}=0.5.}
Kreivis taške
M
1
{\displaystyle M_{1}}
yra lygus:
K
M
1
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
{\displaystyle K_{M_{1}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}=}
=
2
(
1
+
4
⋅
5
2
)
3
2
=
2
101
3
2
=
2
1030301
=
2
1015.037438
=
0.00197037.
{\displaystyle ={\frac {2}{(1+4\cdot 5^{2})^{3 \over 2}}}={\frac {2}{101^{3 \over 2}}}={\frac {2}{\sqrt {1030301}}}={\frac {2}{1015.037438}}=0.00197037.}
R
1
=
1
K
M
1
=
1
2
1030301
=
1030301
2
=
507.5187189.
{\displaystyle R_{1}={\frac {1}{K_{M_{1}}}}={\frac {1}{\frac {2}{\sqrt {1030301}}}}={\frac {\sqrt {1030301}}{2}}=507.5187189.}
Parabolės evoliutės lanko ilgis iš taško
C
0
{\displaystyle C_{0}}
iki taško
C
1
{\displaystyle C_{1}}
yra lygus:
L
=
R
1
−
R
0
=
1030301
2
−
1
2
=
507.5187189
−
0.5
=
507.0187189.
{\displaystyle L=R_{1}-R_{0}={\frac {\sqrt {1030301}}{2}}-{\frac {1}{2}}=507.5187189-0.5=507.0187189.}
Nustatyti kreivį parabolės
y
=
x
2
{\displaystyle y=x^{2}}
taškuose
x
0
=
0
{\displaystyle x_{0}=0}
ir
x
1
=
5.
{\displaystyle x_{1}=5.}
Rasti prabolės evoliutės lanko ilgį iš taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};\;y_{2})}
iki taško
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};\;y_{3})}
naudojantis kreivės lanko ilgio skaičiavimo formule
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
.
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx.}
Taškas
C
0
{\displaystyle C_{0}}
yra spindulio
R
0
{\displaystyle R_{0}}
centras, o taškas
C
1
{\displaystyle C_{1}}
yra spindulio
R
2
{\displaystyle R_{2}}
centras. Spindulys
R
0
{\displaystyle R_{0}}
yra atkarpa iš taško
M
0
(
x
0
;
y
0
)
{\displaystyle M_{0}(x_{0};y_{0})}
iki taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};y_{2})}
. Spindulys
R
1
{\displaystyle R_{1}}
yra atkarpa iš taško
M
1
(
x
1
;
y
1
)
{\displaystyle M_{1}(x_{1};y_{1})}
iki taško
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};y_{3})}
.
Sprendimas .
y
′
=
(
x
2
)
′
=
2
x
,
y
″
=
(
2
x
)
′
=
2.
{\displaystyle y'=(x^{2})'=2x,\quad y''=(2x)'=2.}
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
.
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}.}
Kreivis taške
M
0
{\displaystyle M_{0}}
yra lygus:
K
M
0
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
2
(
1
+
4
⋅
0
2
)
3
2
=
2.
{\displaystyle K_{M_{0}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}={\frac {2}{(1+4\cdot 0^{2})^{3 \over 2}}}=2.}
R
0
=
1
K
M
0
=
1
2
=
0.5.
{\displaystyle R_{0}={\frac {1}{K_{M_{0}}}}={\frac {1}{2}}=0.5.}
Kreivis taške
M
1
{\displaystyle M_{1}}
yra lygus:
K
M
1
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
{\displaystyle K_{M_{1}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}=}
=
2
(
1
+
4
⋅
5
2
)
3
2
=
2
101
3
2
=
2
1030301
=
2
1015.037438
=
0.00197037.
{\displaystyle ={\frac {2}{(1+4\cdot 5^{2})^{3 \over 2}}}={\frac {2}{101^{3 \over 2}}}={\frac {2}{\sqrt {1030301}}}={\frac {2}{1015.037438}}=0.00197037.}
R
1
=
1
K
M
1
=
1
2
1030301
=
1030301
2
=
507.5187189.
{\displaystyle R_{1}={\frac {1}{K_{M_{1}}}}={\frac {1}{\frac {2}{\sqrt {1030301}}}}={\frac {\sqrt {1030301}}{2}}=507.5187189.}
Dabar užrašysime parabolės normalės lygtį taške
M
1
(
5
;
25
)
{\displaystyle M_{1}(5;25)}
:
y
−
y
M
1
=
−
1
y
′
(
x
M
1
)
(
x
−
x
M
1
)
,
{\displaystyle y-y_{M_{1}}=-{\frac {1}{y'(x_{M_{1}})}}(x-x_{M_{1}}),}
y
−
y
M
1
=
−
1
2
x
M
1
(
x
−
x
M
1
)
,
{\displaystyle y-y_{M_{1}}=-{\frac {1}{2x_{M_{1}}}}(x-x_{M_{1}}),}
y
−
25
=
−
1
2
⋅
5
(
x
−
5
)
,
{\displaystyle y-25=-{\frac {1}{2\cdot 5}}(x-5),}
y
−
25
=
−
1
10
(
x
−
5
)
,
{\displaystyle y-25=-{\frac {1}{10}}(x-5),}
y
=
−
x
10
+
1
2
+
25
=
−
0.1
x
+
25.5.
{\displaystyle y=-{\frac {x}{10}}+{\frac {1}{2}}+25=-0.1x+25.5.}
Toliau rasime spindulio
R
1
=
1030301
2
{\displaystyle R_{1}={\frac {\sqrt {1030301}}{2}}}
centro
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};\;y_{3})}
koordinates. Žinome, kad
(
x
3
−
x
1
)
2
+
(
y
3
−
y
1
)
2
=
R
1
2
,
{\displaystyle (x_{3}-x_{1})^{2}+(y_{3}-y_{1})^{2}=R_{1}^{2},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
R
1
,
{\displaystyle {\sqrt {(x_{3}-5)^{2}+(y_{3}-25)^{2}}}=R_{1},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
(
1030301
2
)
2
,
{\displaystyle (x_{3}-5)^{2}+(y_{3}-25)^{2}=\left({\frac {\sqrt {1030301}}{2}}\right)^{2},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
1030301
4
=
257575.25.
{\displaystyle (x_{3}-5)^{2}+(y_{3}-25)^{2}={\frac {1030301}{4}}=257575.25.}
Išsprendę lygčių sistemą rasime
x
3
{\displaystyle x_{3}}
taško
C
1
{\displaystyle C_{1}}
koordinatę:
{
y
−
25
=
−
1
10
(
x
−
5
)
,
(
x
−
5
)
2
+
(
y
−
25
)
2
=
1030301
4
;
{\displaystyle {\begin{cases}y-25=-{\frac {1}{10}}(x-5),&\\(x-5)^{2}+(y-25)^{2}={\frac {1030301}{4}};&\end{cases}}}
keitimo budu gauname:
(
x
−
5
)
2
+
(
−
1
10
(
x
−
5
)
)
2
=
1030301
4
,
{\displaystyle (x-5)^{2}+\left(-{\frac {1}{10}}(x-5)\right)^{2}={\frac {1030301}{4}},}
(
x
−
5
)
2
+
1
100
(
x
−
5
)
2
=
1030301
4
,
{\displaystyle (x-5)^{2}+{\frac {1}{100}}(x-5)^{2}={\frac {1030301}{4}},}
x
2
−
10
x
+
25
+
x
2
−
10
x
+
25
100
=
1030301
4
,
{\displaystyle x^{2}-10x+25+{\frac {x^{2}-10x+25}{100}}={\frac {1030301}{4}},}
x
2
−
10
x
+
25
+
0.01
x
2
−
0.1
x
+
0.25
=
257575.25
,
{\displaystyle x^{2}-10x+25+0.01x^{2}-0.1x+0.25=257575.25,}
x
2
−
10
x
+
25
+
0.01
x
2
−
0.1
x
+
0.25
−
257575.25
=
0
,
{\displaystyle x^{2}-10x+25+0.01x^{2}-0.1x+0.25-257575.25=0,}
x
2
+
0.01
x
2
−
10
x
−
0.1
x
−
257575
+
25
=
0
,
{\displaystyle x^{2}+0.01x^{2}-10x-0.1x-257575+25=0,}
1.01
x
2
−
10.1
x
−
257550
=
0
,
{\displaystyle 1.01x^{2}-10.1x-257550=0,}
101
x
2
−
1010
x
−
25755000
=
0
,
{\displaystyle 101x^{2}-1010x-25755000=0,}
Tai yra kvadratinė lygtis, kurios sprendiniai yra:
x
=
−
b
+
b
2
−
4
a
c
2
a
=
−
(
−
1010
)
+
(
−
1010
)
2
−
4
⋅
101
⋅
(
−
25755000
)
2
⋅
101
=
{\displaystyle x={\frac {-b+{\sqrt {b^{2}-4ac}}}{2a}}={\frac {-(-1010)+{\sqrt {(-1010)^{2}-4\cdot 101\cdot (-25755000)}}}{2\cdot 101}}=}
=
1010
+
1020100
+
10405020000
202
=
1010
+
10406040100
202
=
1010
+
102010
202
=
103020
202
=
510
;
{\displaystyle ={\frac {1010+{\sqrt {1020100+10405020000}}}{202}}={\frac {1010+{\sqrt {10406040100}}}{202}}={\frac {1010+102010}{202}}={\frac {103020}{202}}=510;}
x
=
−
b
−
b
2
−
4
a
c
2
a
=
−
(
−
1010
)
−
(
−
1010
)
2
−
4
⋅
101
⋅
(
−
25755000
)
2
⋅
101
=
{\displaystyle x={\frac {-b-{\sqrt {b^{2}-4ac}}}{2a}}={\frac {-(-1010)-{\sqrt {(-1010)^{2}-4\cdot 101\cdot (-25755000)}}}{2\cdot 101}}=}
=
1010
−
1020100
+
10405020000
202
=
1010
−
10406040100
202
=
1010
−
102010
202
=
−
101000
202
=
−
500.
{\displaystyle ={\frac {1010-{\sqrt {1020100+10405020000}}}{202}}={\frac {1010-{\sqrt {10406040100}}}{202}}={\frac {1010-102010}{202}}={\frac {-101000}{202}}=-500.}
Kadangi spindulys
R
1
{\displaystyle R_{1}}
yra parabolės liestinės normalė ir spindulio
R
1
{\displaystyle R_{1}}
galas (centras
C
1
{\displaystyle C_{1}}
) priklauso parabolės evoliutei, tai
x
3
=
−
500.
{\displaystyle x_{3}=-500.}
Žinodami
x
3
{\displaystyle x_{3}}
, įstatę į parabolės evoliutės lygtį, randame (sekančiame pavyzdyje pateiktas parabolės evoliutės lygties radimas):
y
3
=
3
x
3
2
3
16
1
3
+
1
2
=
3
⋅
(
−
500
)
2
3
16
1
3
+
1
2
=
3
⋅
250000
1
3
16
1
3
+
1
2
=
{\displaystyle y_{3}={\frac {3x_{3}^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot (-500)^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot 250000^{1 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}=}
=
3
⋅
15625
1
3
+
0.5
=
3
⋅
25
+
0.5
=
75
+
0.5
=
75.5.
{\displaystyle =3\cdot 15625^{1 \over 3}+0.5=3\cdot 25+0.5=75+0.5=75.5.}
Arba per Pitagoro teoremą randame:
y
p
=
R
1
2
−
(
x
3
−
x
1
)
2
=
507.5187189
2
−
(
−
500
−
5
)
2
=
257575.25
−
255025
=
2550.25
=
50.5
;
{\displaystyle y_{p}={\sqrt {R_{1}^{2}-(x_{3}-x_{1})^{2}}}={\sqrt {507.5187189^{2}-(-500-5)^{2}}}={\sqrt {257575.25-255025}}={\sqrt {2550.25}}=50.5;}
y
3
=
y
1
+
y
p
=
25
+
50.5
=
75.5.
{\displaystyle y_{3}=y_{1}+y_{p}=25+50.5=75.5.}
Taigi, radome spindulio
R
1
{\displaystyle R_{1}}
centrą
C
1
(
−
500
;
75.5
)
.
{\displaystyle C_{1}(-500;\;75.5).}
Toliau rasime spindulio
R
0
=
1
2
{\displaystyle R_{0}={\frac {1}{2}}}
centro
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};\;y_{2})}
koordinates. Žinome, kad
(
x
2
−
x
0
)
2
+
(
y
2
−
y
0
)
2
=
R
0
2
,
{\displaystyle (x_{2}-x_{0})^{2}+(y_{2}-y_{0})^{2}=R_{0}^{2},}
(
x
2
−
0
)
2
+
(
y
2
−
0
)
2
=
R
0
,
{\displaystyle {\sqrt {(x_{2}-0)^{2}+(y_{2}-0)^{2}}}=R_{0},}
(
x
2
−
0
)
2
+
(
y
2
−
0
)
2
=
(
1
2
)
2
,
{\displaystyle (x_{2}-0)^{2}+(y_{2}-0)^{2}=\left({\frac {1}{2}}\right)^{2},}
(
x
3
−
0
)
2
+
(
y
3
−
0
)
2
=
1
4
.
{\displaystyle (x_{3}-0)^{2}+(y_{3}-0)^{2}={\frac {1}{4}}.}
Išsprendę lygčių sistemą rasime
x
2
{\displaystyle x_{2}}
(taško
C
0
{\displaystyle C_{0}}
koordinate):
{
y
−
0
=
−
1
2
x
(
x
−
0
)
,
(
x
−
0
)
2
+
(
y
−
0
)
2
=
1
4
;
{\displaystyle {\begin{cases}y-0=-{\frac {1}{2x}}(x-0),&\\(x-0)^{2}+(y-0)^{2}={\frac {1}{4}};&\end{cases}}}
keitimo budu gauname:
(
x
−
0
)
2
+
(
−
1
2
x
(
x
−
0
)
)
2
=
1
4
,
{\displaystyle (x-0)^{2}+\left(-{\frac {1}{2x}}(x-0)\right)^{2}={\frac {1}{4}},}
x
2
+
1
4
x
2
(
x
−
0
)
2
=
1
4
,
{\displaystyle x^{2}+{\frac {1}{4x^{2}}}(x-0)^{2}={\frac {1}{4}},}
x
2
+
x
2
4
x
2
=
1
4
,
{\displaystyle x^{2}+{\frac {x^{2}}{4x^{2}}}={\frac {1}{4}},}
x
2
+
1
4
=
1
4
,
{\displaystyle x^{2}+{\frac {1}{4}}={\frac {1}{4}},}
x
2
=
1
4
−
1
4
,
{\displaystyle x^{2}={\frac {1}{4}}-{\frac {1}{4}},}
x
=
0.
{\displaystyle x=0.}
Taigi,
x
2
=
0.
{\displaystyle x_{2}=0.}
Žinodami
x
2
{\displaystyle x_{2}}
, įstatę į parabolės evoliutės lygtį, randame (sekančiame pavyzdyje pateiktas parabolės evoliutės lygties radimas):
y
2
=
3
x
2
2
3
16
1
3
+
1
2
=
3
⋅
0
2
3
16
1
3
+
1
2
=
1
2
=
0.5.
{\displaystyle y_{2}={\frac {3x_{2}^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot 0^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {1}{2}}=0.5.}
Arba per Pitagoro teoremą randame:
y
d
=
R
0
2
−
(
x
2
−
x
0
)
2
=
0.5
2
−
(
0
−
0
)
2
=
0.25
−
0
=
0.25
=
0.5
;
{\displaystyle y_{d}={\sqrt {R_{0}^{2}-(x_{2}-x_{0})^{2}}}={\sqrt {0.5^{2}-(0-0)^{2}}}={\sqrt {0.25-0}}={\sqrt {0.25}}=0.5;}
y
3
=
y
0
+
y
d
=
0
+
0.5
=
0.5.
{\displaystyle y_{3}=y_{0}+y_{d}=0+0.5=0.5.}
Radome spindulio
R
0
{\displaystyle R_{0}}
centrą
C
0
(
0
;
1
2
)
.
{\displaystyle C_{0}(0;\;{\frac {1}{2}}).}
Rasti lygtį evoliutės parabolės
y
=
x
2
.
{\displaystyle y=x^{2}.}
Rasti lanko ilgį L evoliutės šios parabolės naudojantis kreivės lanko ilgio skaičiavimo formule
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
.
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx.}
Rasti evoliutės lanko ilgį iš taško
M
0
(
0
;
1
2
)
{\displaystyle M_{0}(0;\;{\frac {1}{2}})}
iki taško
M
1
(
−
500
;
75.5
)
.
{\displaystyle M_{1}(-500;\;75.5).}
Sprendimas . Turime bet kokiam taškui (x; y) parabolės kreivio centro koordinates
C
(
α
;
β
)
{\displaystyle C(\alpha ;\beta )}
:
d
y
d
x
=
(
x
2
)
′
=
2
x
;
{\displaystyle {\frac {dy}{dx}}=(x^{2})'=2x;}
d
2
y
d
x
2
=
(
2
x
)
′
=
2
;
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=(2x)'=2;}
α
=
x
−
y
′
(
1
+
y
′
2
)
y
″
=
x
−
2
x
(
1
+
(
2
x
)
2
)
2
=
x
−
x
(
1
+
4
x
2
)
=
x
−
x
−
4
x
3
=
−
4
x
3
.
{\displaystyle \alpha =x-{\frac {y'(1+y'^{2})}{y''}}=x-{\frac {2x(1+(2x)^{2})}{2}}=x-x(1+4x^{2})=x-x-4x^{3}=-4x^{3}.}
β
=
y
+
1
+
y
′
2
y
″
=
x
2
+
1
+
(
2
x
)
2
2
=
x
2
+
1
+
4
x
2
2
=
x
2
+
1
2
+
2
x
2
=
3
x
2
+
1
2
.
{\displaystyle \beta =y+{\frac {1+y'^{2}}{y''}}=x^{2}+{\frac {1+(2x)^{2}}{2}}=x^{2}+{\frac {1+4x^{2}}{2}}=x^{2}+{\frac {1}{2}}+2x^{2}=3x^{2}+{\frac {1}{2}}.}
(Pavyzdžiui, taške M (5; 25), turime
α
=
−
4
⋅
5
3
=
−
4
⋅
125
=
−
500
{\displaystyle \alpha =-4\cdot 5^{3}=-4\cdot 125=-500}
ir
β
=
3
⋅
5
2
+
0.5
=
75
+
0.5
=
75.5
{\displaystyle \beta =3\cdot 5^{2}+0.5=75+0.5=75.5}
, gauname C (-500; 75.5)).
Eliminuojant iš šitų lygčių parametrą x , gausime:
α
=
−
4
x
3
,
{\displaystyle \alpha =-4x^{3},}
−
α
4
=
x
3
,
{\displaystyle -{\frac {\alpha }{4}}=x^{3},}
x
=
−
(
α
4
)
1
3
;
{\displaystyle x=-\left({\frac {\alpha }{4}}\right)^{1 \over 3};}
β
=
3
x
2
+
1
2
,
{\displaystyle \beta =3x^{2}+{\frac {1}{2}},}
β
=
3
(
−
(
α
4
)
1
3
)
2
+
1
2
=
3
(
α
4
)
2
3
+
1
2
,
{\displaystyle \beta =3\left(-\left({\frac {\alpha }{4}}\right)^{1 \over 3}\right)^{2}+{\frac {1}{2}}=3\left({\frac {\alpha }{4}}\right)^{2 \over 3}+{\frac {1}{2}},}
β
=
3
α
2
3
16
1
3
+
1
2
.
{\displaystyle \beta ={\frac {3\alpha ^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}.}
Tai yra lygtis evoliutės. Čia
β
{\displaystyle \beta }
yra ordinačių ašies (Oy ašies) reikšmė, o
α
{\displaystyle \alpha }
yra abscisių ašies (Ox ašies) reikšmė.
Rasime evoliutės lanko ilgį iš taško
M
0
(
0
;
1
2
)
{\displaystyle M_{0}(0;\;{\frac {1}{2}})}
iki taško
M
1
(
−
500
;
75.5
)
:
{\displaystyle M_{1}(-500;\;75.5):}
d
β
d
α
=
(
3
α
2
3
16
1
3
+
1
2
)
′
=
2
3
⋅
3
α
−
1
3
16
1
3
=
2
16
1
3
α
1
3
;
{\displaystyle {\frac {d\beta }{d\alpha }}=\left({\frac {3\alpha ^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}\right)'={\frac {2}{3}}\cdot {\frac {3\alpha ^{-{\frac {1}{3}}}}{16^{\frac {1}{3}}}}={\frac {2}{16^{1 \over 3}\alpha ^{1 \over 3}}};}
L
=
∫
a
b
1
+
(
d
β
d
α
)
2
d
α
=
∫
−
500
0
1
+
(
2
16
1
3
α
1
3
)
2
d
α
=
∫
−
500
0
1
+
4
256
1
3
α
2
3
d
α
=
∫
−
500
0
2
16
1
3
256
1
3
4
+
1
α
2
3
d
α
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+\left({\frac {d\beta }{d\alpha }}\right)^{2}}}d\alpha =\int _{-500}^{0}{\sqrt {1+\left({\frac {2}{16^{\frac {1}{3}}\alpha ^{1 \over 3}}}\right)^{2}}}d\alpha =\int _{-500}^{0}{\sqrt {1+{\frac {4}{256^{1 \over 3}\alpha ^{2 \over 3}}}}}d\alpha =\int _{-500}^{0}{\frac {2}{16^{1 \over 3}}}{\sqrt {{\frac {256^{1 \over 3}}{4}}+{\frac {1}{\alpha ^{2 \over 3}}}}}d\alpha =}
=
2
16
1
3
⋅
2
x
+
(
2
x
)
1
3
2
⋅
1
x
2
3
+
2
2
3
|
−
500
0
=
1
16
1
3
(
2
x
+
(
2
x
)
1
3
)
1
x
2
3
+
2
2
3
|
−
500
0
=
{\displaystyle ={\frac {2}{16^{1 \over 3}}}\cdot {\frac {2x+(2x)^{1 \over 3}}{2}}\cdot {\sqrt {{\frac {1}{x^{2 \over 3}}}+2^{2 \over 3}}}|_{-500}^{0}={\frac {1}{16^{1 \over 3}}}(2x+(2x)^{1 \over 3}){\sqrt {{\frac {1}{x^{2 \over 3}}}+2^{2 \over 3}}}|_{-500}^{0}=}
=
1
16
1
3
(
2
⋅
0
+
(
2
⋅
0
)
1
3
)
1
0
2
3
+
2
2
3
−
1
16
1
3
(
2
⋅
(
−
500
)
+
(
2
⋅
(
−
500
)
)
1
3
)
1
(
−
500
)
2
3
+
2
2
3
=
{\displaystyle ={\frac {1}{16^{1 \over 3}}}(2\cdot 0+(2\cdot 0)^{1 \over 3}){\sqrt {{\frac {1}{0^{2 \over 3}}}+2^{2 \over 3}}}-{\frac {1}{16^{1 \over 3}}}(2\cdot (-500)+(2\cdot (-500))^{1 \over 3}){\sqrt {{\frac {1}{(-500)^{2 \over 3}}}+2^{2 \over 3}}}=}
=
−
1
16
1
3
(
−
1000
+
(
−
1000
)
1
3
)
1
250000
1
3
+
4
1
3
=
−
1
16
1
3
(
−
1000
−
10
)
1
250000
1
3
+
4
1
3
=
{\displaystyle =-{\frac {1}{16^{1 \over 3}}}(-1000+(-1000)^{1 \over 3}){\sqrt {{\frac {1}{250000^{1 \over 3}}}+4^{1 \over 3}}}=-{\frac {1}{16^{1 \over 3}}}(-1000-10){\sqrt {{\frac {1}{250000^{1 \over 3}}}+4^{1 \over 3}}}=}
=
1
16
1
3
⋅
1010
1
250000
1
3
+
4
1
3
=
{\displaystyle ={\frac {1}{16^{1 \over 3}}}\cdot 1010{\sqrt {{\frac {1}{250000^{1 \over 3}}}+4^{1 \over 3}}}=}
=
0.396850263
⋅
1010
1
62.99605249
+
1.587401052
=
{\displaystyle =0.396850263\cdot 1010{\sqrt {{\frac {1}{62.99605249}}+1.587401052}}=}
=
0.396850263
⋅
1010
0.01587401
+
1.587401052
=
2.5198421
⋅
1010
1.603275062
=
{\displaystyle =0.396850263\cdot 1010{\sqrt {0.01587401+1.587401052}}=2.5198421\cdot 1010{\sqrt {1.603275062}}=}
=
0.396850263
⋅
1010
⋅
1.266204984
=
507.5187187.
{\displaystyle =0.396850263\cdot 1010\cdot 1.266204984=507.5187187.}
Pasinaudojome internetiniu integratoriumi http://integrals.wolfram.com/index.jsp?expr=sqrt%5B%28256%5E%281%2F3%29%29%2F4%2B1%2F%28x%5E%282%2F3%29%29%5D&random=false .
Bet tikrasis lanko ilgis yra
L
=
507.0187187
{\displaystyle L=507.0187187}
. Kad gauti šitą reikšmę reikia integruoti nuo -500 iki -0,000001, tai, matyt, evoliutės ypatumas kai kuriais atvejais. Įstačius
x
=
−
0.001
{\displaystyle x=-0.001}
, gauname:
1
16
1
3
(
2
x
+
(
2
x
)
1
3
)
1
x
2
3
+
2
2
3
=
1
16
1
3
(
−
0.002
+
(
−
0.002
)
1
3
)
1
(
−
0.001
)
2
3
+
2
2
3
=
{\displaystyle {\frac {1}{16^{1 \over 3}}}(2x+(2x)^{1 \over 3}){\sqrt {{\frac {1}{x^{2 \over 3}}}+2^{2 \over 3}}}={\frac {1}{16^{1 \over 3}}}(-0.002+(-0.002)^{1 \over 3}){\sqrt {{\frac {1}{(-0.001)^{2 \over 3}}}+2^{2 \over 3}}}=}
=
1
16
1
3
(
−
0.002
−
0.125992105
)
1
(
−
0.001
)
2
3
+
2
2
3
=
1
2.5198421
⋅
(
−
0.127992105
)
⋅
1
0.01
+
2
2
3
=
{\displaystyle ={\frac {1}{16^{1 \over 3}}}(-0.002-0.125992105){\sqrt {{\frac {1}{(-0.001)^{2 \over 3}}}+2^{2 \over 3}}}={\frac {1}{2.5198421}}\cdot (-0.127992105)\cdot {\sqrt {{\frac {1}{0.01}}+2^{2 \over 3}}}=}
=
0.396850263
⋅
(
−
0.127992105
)
⋅
100
+
1.587401052
=
−
0.0507937
⋅
101.5874011
=
{\displaystyle =0.396850263\cdot (-0.127992105)\cdot {\sqrt {100+1.587401052}}=-0.0507937\cdot {\sqrt {101.5874011}}=}
=
−
0.0507937
⋅
10.07905755
=
−
0.51195263.
{\displaystyle =-0.0507937\cdot 10.07905755=-0.51195263.}
Nustatyti krevio centro taškų
C
1
(
x
1
;
y
1
)
{\displaystyle C_{1}(x_{1};y_{1})}
ir
C
2
(
x
2
;
y
2
)
{\displaystyle C_{2}(x_{2};y_{2})}
koordinates hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
taškuose
O
(
0
;
0
)
{\displaystyle O(0;0)}
ir
M
(
2
;
2
)
{\displaystyle M(2;2)}
atitinkamai.
Rasti kreivį taškuose
O
(
0
;
0
)
{\displaystyle O(0;0)}
,
M
(
2
;
2
)
.
{\displaystyle M(2;2).}
Rasti spindulio
R
1
{\displaystyle R_{1}}
ilgį iš taško
O
(
0
;
0
)
{\displaystyle O(0;\;0)}
iki taško
C
1
(
x
1
;
y
1
)
.
{\displaystyle C_{1}(x_{1};\;y_{1}).}
Rasti spindulio
R
2
{\displaystyle R_{2}}
ilgį iš taško
M
(
2
;
2
)
{\displaystyle M(2;\;2)}
iki taško
C
2
(
x
2
;
y
2
)
.
{\displaystyle C_{2}(x_{2};\;y_{2}).}
Rasti hiperbolės evoliutės lanko ilgį L iš taško
C
1
(
x
1
;
y
1
)
{\displaystyle C_{1}(x_{1};\;y_{1})}
iki taško
C
2
(
x
2
;
y
2
)
.
{\displaystyle C_{2}(x_{2};\;y_{2}).}
Pagal apibrėžimą evoliutės lanko ilgis L lygus spindulių
R
2
{\displaystyle R_{2}}
ir
R
1
{\displaystyle R_{1}}
skirtumui.
Rasti hiperbolės evolutės lygtį.
Rasti hiperbolės evoliutės lanko ilgį L iš taško
C
1
(
x
1
;
y
1
)
{\displaystyle C_{1}(x_{1};\;y_{1})}
iki taško
C
2
(
x
2
;
y
2
)
{\displaystyle C_{2}(x_{2};\;y_{2})}
naudojantis kreivės lanko ilgio skaičiavimo formule
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
.
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx.}
Sprendimas . Įstatant reikšmes
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
ir
d
2
y
d
x
2
{\displaystyle {\frac {d^{2}y}{dx^{2}}}}
į formules, gausime:
d
y
d
x
=
(
2
x
)
′
=
1
2
⋅
(
2
x
)
′
2
x
=
1
2
x
;
{\displaystyle {\frac {dy}{dx}}=({\sqrt {2x}})'={\frac {1}{2}}\cdot {\frac {(2x)'}{\sqrt {2x}}}={\frac {1}{\sqrt {2x}}};}
d
2
y
d
x
2
=
(
p
2
x
)
′
=
−
1
2
⋅
(
2
x
)
′
(
2
x
)
3
2
=
−
1
(
2
x
)
3
2
;
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=\left({\frac {p}{\sqrt {2x}}}\right)'=-{\frac {1}{2}}\cdot {\frac {(2x)'}{(2x)^{3 \over 2}}}=-{\frac {1}{(2x)^{3 \over 2}}};}
α
=
x
−
y
′
(
1
+
y
′
2
)
y
″
=
x
−
1
2
x
(
1
+
1
2
x
)
−
1
(
2
x
)
3
2
=
x
−
1
1
+
1
2
x
−
1
2
x
=
x
+
2
x
+
1
=
3
x
+
1
;
{\displaystyle \alpha =x-{\frac {y'(1+y'^{2})}{y''}}=x-{\frac {{\frac {1}{\sqrt {2x}}}(1+{\frac {1}{2x}})}{-{\frac {1}{(2x)^{3 \over 2}}}}}=x-{\frac {1}{1+{\frac {1}{2x}}}}{-{\frac {1}{2x}}}=x+2x+1=3x+1;}
β
=
y
+
1
+
y
′
2
y
″
=
2
x
+
1
+
1
2
x
−
1
(
2
x
)
3
2
=
−
2
x
(
2
x
)
3
2
+
1
+
1
2
x
−
1
(
2
x
)
3
2
=
{\displaystyle \beta =y+{\frac {1+y'^{2}}{y''}}={\sqrt {2x}}+{\frac {1+{\frac {1}{2x}}}{-{\frac {1}{(2x)^{3 \over 2}}}}}={\frac {-{\frac {\sqrt {2x}}{(2x)^{3 \over 2}}}+1+{\frac {1}{2x}}}{-{\frac {1}{(2x)^{3 \over 2}}}}}=}
=
−
1
2
x
+
1
+
1
2
x
−
1
(
2
x
)
3
2
=
1
−
1
(
2
x
)
3
2
=
−
(
2
x
)
3
2
.
{\displaystyle ={\frac {-{\frac {1}{2x}}+1+{\frac {1}{2x}}}{-{\frac {1}{(2x)^{3 \over 2}}}}}={\frac {1}{-{\frac {1}{(2x)^{3 \over 2}}}}}=-(2x)^{3 \over 2}.}
Taško
C
1
(
x
1
;
y
1
)
{\displaystyle C_{1}(x_{1};y_{1})}
koordinatės yra šios:
x
1
=
α
=
3
x
+
1
=
3
x
O
+
1
=
3
⋅
0
+
1
=
1
;
{\displaystyle x_{1}=\alpha =3x+1=3x_{O}+1=3\cdot 0+1=1;}
y
1
=
β
=
−
(
2
x
)
3
2
=
−
(
2
x
O
)
3
2
=
−
(
2
⋅
0
)
3
2
=
0.
{\displaystyle y_{1}=\beta =-(2x)^{3 \over 2}=-(2x_{O})^{3 \over 2}=-(2\cdot 0)^{3 \over 2}=0.}
Vadinasi kreivio centras taške
O
(
0
;
0
)
{\displaystyle O(0;0)}
yra
C
1
(
1
;
0
)
{\displaystyle C_{1}(1;0)}
.
Taško
C
2
(
x
2
;
y
2
)
{\displaystyle C_{2}(x_{2};y_{2})}
koordinatės yra šios:
x
2
=
α
=
3
x
+
1
=
3
x
M
+
1
=
3
⋅
2
+
1
=
7
;
{\displaystyle x_{2}=\alpha =3x+1=3x_{M}+1=3\cdot 2+1=7;}
y
2
=
β
=
−
(
2
x
)
3
2
=
−
(
2
x
M
)
3
2
=
−
(
2
⋅
2
)
3
2
=
−
4
3
=
−
4
4
=
−
8.
{\displaystyle y_{2}=\beta =-(2x)^{3 \over 2}=-(2x_{M})^{3 \over 2}=-(2\cdot 2)^{3 \over 2}=-{\sqrt {4^{3}}}=-4{\sqrt {4}}=-8.}
Kreivio centras taške
M
(
2
;
2
)
{\displaystyle M(2;2)}
yra taškas
C
2
(
7
;
−
8
)
{\displaystyle C_{2}(7;-8)}
.
Hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
kreivis yra
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
−
1
(
2
x
)
3
2
|
[
1
+
(
1
2
x
)
2
]
3
2
=
1
(
2
x
)
3
2
[
1
+
1
2
x
]
3
2
=
1
(
2
x
+
1
)
3
2
.
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|-{\frac {1}{(2x)^{3 \over 2}}}\right|}{\left[1+\left({\frac {1}{\sqrt {2x}}}\right)^{2}\right]^{3 \over 2}}}={\frac {1}{(2x)^{3 \over 2}\left[1+{\frac {1}{2x}}\right]^{3 \over 2}}}={\frac {1}{(2x+1)^{3 \over 2}}}.}
Hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
spindulio formulė yra
R
=
1
K
=
1
1
(
2
x
+
1
)
3
2
=
(
2
x
+
1
)
3
2
.
{\displaystyle R={\frac {1}{K}}={\frac {1}{\frac {1}{(2x+1)^{3 \over 2}}}}=(2x+1)^{3 \over 2}.}
Hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
spindulio
R
1
{\displaystyle R_{1}}
ilgis iš taško
O
(
0
;
0
)
{\displaystyle O(0;\;0)}
iki taško
C
1
(
1
;
0
)
{\displaystyle C_{1}(1;\;0)}
yra lygus:
R
1
=
(
2
x
O
+
1
)
3
2
=
(
2
⋅
0
+
1
)
3
2
=
1.
{\displaystyle R_{1}=(2x_{O}+1)^{3 \over 2}=(2\cdot 0+1)^{3 \over 2}=1.}
Hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
spindulio
R
2
{\displaystyle R_{2}}
ilgis iš taško
M
(
2
;
2
)
{\displaystyle M(2;\;2)}
iki taško
C
2
(
7
;
−
8
)
{\displaystyle C_{2}(7;\;-8)}
yra lygus:
R
2
=
(
2
x
M
+
1
)
3
2
=
(
2
⋅
2
+
1
)
3
2
=
5
3
=
125
=
5
5
=
11.18033989.
{\displaystyle R_{2}=(2x_{M}+1)^{3 \over 2}=(2\cdot 2+1)^{3 \over 2}={\sqrt {5^{3}}}={\sqrt {125}}=5{\sqrt {5}}=11.18033989.}
Arba
R
2
=
(
x
2
−
x
M
)
2
+
(
y
2
−
y
M
)
2
=
(
7
−
2
)
2
+
(
−
8
−
2
)
2
=
5
2
+
(
−
10
)
2
=
125
=
11.18033989.
{\displaystyle R_{2}={\sqrt {(x_{2}-x_{M})^{2}+(y_{2}-y_{M})^{2}}}={\sqrt {(7-2)^{2}+(-8-2)^{2}}}={\sqrt {5^{2}+(-10)^{2}}}={\sqrt {125}}=11.18033989.}
Hiperbolės evoliutės lanko ilgis L iš taško
C
1
(
1
;
0
)
{\displaystyle C_{1}(1;\;0)}
iki taško
C
2
(
7
;
−
8
)
{\displaystyle C_{2}(7;\;-8)}
yra lygus:
L
=
R
2
−
R
1
=
125
−
1
=
11.18033989
−
1
=
10.18033989.
{\displaystyle L=R_{2}-R_{1}={\sqrt {125}}-1=11.18033989-1=10.18033989.}
Rasime hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
evoliutės lygtį
α
=
3
x
+
1
,
{\displaystyle \alpha =3x+1,}
α
−
1
=
3
x
,
{\displaystyle \alpha -1=3x,}
x
=
α
−
1
3
;
{\displaystyle x={\frac {\alpha -1}{3}};}
β
=
−
(
2
x
)
3
2
,
{\displaystyle \beta =-(2x)^{3 \over 2},}
β
=
−
(
2
⋅
α
−
1
3
)
3
2
,
{\displaystyle \beta =-\left(2\cdot {\frac {\alpha -1}{3}}\right)^{3 \over 2},}
β
=
−
8
27
(
α
−
1
)
3
,
{\displaystyle \beta =-{\frac {\sqrt {8}}{\sqrt {27}}}{\sqrt {(\alpha -1)^{3}}},}
Tai yra lygtis evoliutės hiperbolės
y
=
2
x
.
{\displaystyle y={\sqrt {2x}}.}
Toliau rasime hiperbolės evoliutės lanko ilgį L iš taško
C
1
(
1
;
0
)
{\displaystyle C_{1}(1;\;0)}
iki taško
C
2
(
7
;
−
8
)
{\displaystyle C_{2}(7;\;-8)}
naudodamiesi kreivės lanko ilgio skaičiavimo formule
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
,
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx,}
kai x kinta nuo 1 iki 7, taigi:
d
β
d
α
=
(
−
8
27
(
α
−
1
)
3
)
′
=
−
8
27
⋅
3
2
α
−
1
=
−
2
3
α
−
1
;
{\displaystyle {\frac {d\beta }{d\alpha }}=\left(-{\frac {\sqrt {8}}{\sqrt {27}}}{\sqrt {(\alpha -1)^{3}}}\right)'=-{\frac {\sqrt {8}}{\sqrt {27}}}\cdot {\frac {3}{2}}{\sqrt {\alpha -1}}=-{\frac {\sqrt {2}}{\sqrt {3}}}{\sqrt {\alpha -1}};}
L
=
∫
a
b
1
+
(
β
′
)
2
d
α
=
∫
1
7
1
+
(
−
2
3
α
−
1
)
2
d
α
=
∫
1
7
1
+
2
3
(
α
−
1
)
d
α
=
∫
1
7
2
3
3
2
+
α
−
1
d
α
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(\beta ')^{2}}}d\alpha =\int _{1}^{7}{\sqrt {1+(-{\frac {\sqrt {2}}{\sqrt {3}}}{\sqrt {\alpha -1}})^{2}}}d\alpha =\int _{1}^{7}{\sqrt {1+{\frac {2}{3}}(\alpha -1)}}d\alpha =\int _{1}^{7}{\sqrt {\frac {2}{3}}}{\sqrt {{\frac {3}{2}}+\alpha -1}}\;d\alpha =}
=
∫
1
7
2
3
3
−
2
2
+
α
d
α
=
∫
1
7
2
3
1
2
+
α
d
(
1
2
+
α
)
=
2
3
(
1
2
+
α
)
3
2
3
2
|
1
7
=
2
3
2
3
(
1
2
+
α
)
3
2
|
1
7
=
{\displaystyle =\int _{1}^{7}{\sqrt {\frac {2}{3}}}{\sqrt {{\frac {3-2}{2}}+\alpha }}\;d\alpha =\int _{1}^{7}{\sqrt {\frac {2}{3}}}{\sqrt {{\frac {1}{2}}+\alpha }}\;{\mathsf {d}}\left({\frac {1}{2}}+\alpha \right)={\sqrt {\frac {2}{3}}}{\frac {({\frac {1}{2}}+\alpha )^{3 \over 2}}{\frac {3}{2}}}|_{1}^{7}={\frac {2}{3}}{\sqrt {\frac {2}{3}}}({\frac {1}{2}}+\alpha )^{3 \over 2}|_{1}^{7}=}
=
8
27
(
1
2
+
7
)
3
2
−
8
27
(
1
2
+
1
)
3
2
=
{\displaystyle ={\sqrt {\frac {8}{27}}}({\frac {1}{2}}+7)^{3 \over 2}-{\sqrt {\frac {8}{27}}}({\frac {1}{2}}+1)^{3 \over 2}=}
=
0.296296296
⋅
(
7.5
)
3
2
−
0.296296296
⋅
(
1.5
)
3
2
=
{\displaystyle ={\sqrt {0.296296296}}\cdot (7.5)^{3 \over 2}-{\sqrt {0.296296296}}\cdot (1.5)^{3 \over 2}=}
=
0.544331054
⋅
(
421.875
)
1
2
−
0.544331054
⋅
(
3.375
)
1
2
=
{\displaystyle =0.544331054\cdot (421.875)^{1 \over 2}-0.544331054\cdot (3.375)^{1 \over 2}=}
=
0.544331054
⋅
20.53959591
−
0.544331054
⋅
1.837117307
=
11.18033989
−
1
=
10.18033989.
{\displaystyle =0.544331054\cdot 20.53959591-0.544331054\cdot 1.837117307=11.18033989-1=10.18033989.}
Apskaičiavimas kreivio linijos, užrašytos parametriškai[ keisti ]
Tegu kreivė užduota parametriškai:
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
.
{\displaystyle x=\phi (t),\quad y=\psi (t).}
Tada
y
′
=
d
y
d
x
=
ψ
′
(
t
)
ϕ
′
(
t
)
,
{\displaystyle y'={\frac {dy}{dx}}={\frac {\psi '(t)}{\phi '(t)}},}
y
″
=
d
2
y
d
x
2
=
ψ
″
ϕ
′
−
ψ
′
ϕ
″
(
ϕ
′
)
3
.
{\displaystyle y''={\frac {d^{2}y}{dx^{2}}}={\frac {\psi ''\phi '-\psi '\phi ''}{(\phi ')^{3}}}.}
Arba
d
y
d
x
=
d
y
d
t
d
x
d
t
,
{\displaystyle {\frac {dy}{dx}}={\frac {\frac {dy}{dt}}{\frac {dx}{dt}}},}
d
2
y
d
x
2
=
d
d
x
(
d
y
d
t
d
x
d
t
)
=
d
d
t
(
d
y
d
t
d
x
d
t
)
d
t
d
x
=
d
x
d
t
d
d
t
(
d
y
d
t
)
−
d
y
d
t
d
d
t
(
d
x
d
t
)
(
d
x
d
t
)
2
d
t
d
x
=
d
x
d
t
d
2
y
d
t
2
−
d
y
d
t
d
2
x
d
t
2
(
d
x
d
t
)
2
d
t
d
x
=
d
x
d
t
d
2
y
d
t
2
−
d
y
d
t
d
2
x
d
t
2
(
d
x
d
t
)
2
1
d
x
d
t
=
d
x
d
t
d
2
y
d
t
2
−
d
y
d
t
d
2
x
d
t
2
(
d
x
d
t
)
3
.
{\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {d}{dx}}\left({\frac {\frac {dy}{dt}}{\frac {dx}{dt}}}\right)={\frac {d}{dt}}\left({\frac {\frac {dy}{dt}}{\frac {dx}{dt}}}\right){\frac {dt}{dx}}={\frac {{\frac {dx}{dt}}{\frac {d}{dt}}({\frac {dy}{dt}})-{\frac {dy}{dt}}{\frac {d}{dt}}({\frac {dx}{dt}})}{({\frac {dx}{dt}})^{2}}}{\frac {dt}{dx}}={\frac {{\frac {dx}{dt}}{\frac {d^{2}y}{dt^{2}}}-{\frac {dy}{dt}}{\frac {d^{2}x}{dt^{2}}}}{({\frac {dx}{dt}})^{2}}}{\frac {dt}{dx}}={\frac {{\frac {dx}{dt}}{\frac {d^{2}y}{dt^{2}}}-{\frac {dy}{dt}}{\frac {d^{2}x}{dt^{2}}}}{({\frac {dx}{dt}})^{2}}}{\frac {1}{\frac {dx}{dt}}}={\frac {{\frac {dx}{dt}}{\frac {d^{2}y}{dt^{2}}}-{\frac {dy}{dt}}{\frac {d^{2}x}{dt^{2}}}}{({\frac {dx}{dt}})^{3}}}.}
Įstatydami gautas išraiškas į formulę (3) praeito skyrio, gausime:
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
(
ϕ
′
)
3
|
[
1
+
(
ψ
′
ϕ
′
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
[
1
(
ϕ
′
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
)
]
3
2
=
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|{\frac {\psi ''\phi '-\psi '\phi ''}{(\phi ')^{3}}}\right|}{\left[1+\left({\frac {\psi '}{\phi '}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\left[{\frac {1}{(\phi ')^{2}}}((\phi ')^{2}+(\psi ')^{2})\right]^{3 \over 2}}}=}
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
⋅
(
1
(
ϕ
′
)
2
)
3
/
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
.
(
1
)
{\displaystyle ={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\cdot ({\frac {1}{(\phi ')^{2}}})^{3/2}\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}.\quad (1)}
Nustatyti kreivį cikloidės
ϕ
(
t
)
=
x
=
a
(
t
−
sin
t
)
,
ψ
(
t
)
=
y
=
a
(
1
−
cos
t
)
{\displaystyle \phi (t)=x=a(t-\sin t),\quad \psi (t)=y=a(1-\cos t)}
jos laisvai pasirenktame taške (x ; y ).
Sprendimas.
ϕ
′
=
d
x
d
t
=
a
(
1
−
cos
t
)
,
ϕ
″
=
d
2
x
d
t
2
=
a
sin
t
,
ψ
′
=
d
y
d
t
=
a
sin
t
,
ψ
″
=
d
2
y
d
t
2
=
a
cos
t
.
{\displaystyle \phi '={\frac {dx}{dt}}=a(1-\cos t),\quad \phi ''={\frac {d^{2}x}{dt^{2}}}=a\sin t,\quad \psi '={\frac {dy}{dt}}=a\sin t,\psi ''={\frac {d^{2}y}{dt^{2}}}=a\cos t.}
Įstatydami gautas išraiškas į formulę (3), randame:
K
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
=
|
a
(
1
−
cos
t
)
a
cos
t
−
a
sin
t
⋅
a
sin
t
|
[
a
2
(
1
−
cos
t
)
2
+
a
2
sin
2
t
]
3
2
=
|
a
2
cos
t
−
a
2
cos
2
t
−
a
2
sin
2
t
|
[
a
2
−
2
a
2
cos
t
+
a
2
cos
2
t
+
a
2
sin
2
t
]
3
2
=
{\displaystyle K={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}={\frac {|a(1-\cos t)a\cos t-a\sin t\cdot a\sin t|}{\left[a^{2}(1-\cos t)^{2}+a^{2}\sin ^{2}t\right]^{3 \over 2}}}={\frac {|a^{2}\cos t-a^{2}\cos ^{2}t-a^{2}\sin ^{2}t|}{\left[a^{2}-2a^{2}\cos t+a^{2}\cos ^{2}t+a^{2}\sin ^{2}t\right]^{3 \over 2}}}=}
=
|
a
2
cos
t
−
a
2
|
[
2
a
2
−
2
a
2
cos
t
]
3
2
=
a
2
|
cos
t
−
1
|
2
3
2
a
3
[
1
−
cos
t
]
3
2
=
1
2
3
2
a
[
1
−
cos
t
]
1
2
=
1
2
3
a
⋅
2
sin
t
2
=
1
4
a
|
sin
t
2
|
.
{\displaystyle ={\frac {|a^{2}\cos t-a^{2}|}{\left[2a^{2}-2a^{2}\cos t\right]^{3 \over 2}}}={\frac {a^{2}|\cos t-1|}{2^{3 \over 2}a^{3}\left[1-\cos t\right]^{3 \over 2}}}={\frac {1}{2^{3 \over 2}a\left[1-\cos t\right]^{1 \over 2}}}={\frac {1}{{\sqrt {2^{3}}}a\cdot {\sqrt {2}}\sin {\frac {t}{2}}}}={\frac {1}{4a|\sin {\frac {t}{2}}|}}.}
Apskaičiavimas kreivio linijos, užrašytos lygtimi polinėse koordinatėse[ keisti ]
Tegu kreivė užrašyta lygtimi pavidalo
ρ
=
f
(
θ
)
.
(
1
)
{\displaystyle \rho =f(\theta ).\quad (1)}
Užrašysime formules perėjimo iš polinių koordinačių į dekartines:
x
=
ρ
cos
θ
,
y
=
ρ
sin
θ
.
(
2
)
{\displaystyle x=\rho \cos \theta ,\quad y=\rho \sin \theta .\quad (2)}
Jeigu į šitas formules įstatyti vietoje
ρ
{\displaystyle \rho }
jo išraišką per
θ
,
{\displaystyle \theta ,}
t. y.
f
(
θ
)
,
{\displaystyle f(\theta ),\;}
tai gausime:
x
=
f
(
θ
)
cos
θ
,
y
=
f
(
θ
)
sin
θ
.
(
3
)
{\displaystyle x=f(\theta )\cos \theta ,\quad y=f(\theta )\sin \theta .\quad (3)}
Paskutines lygtis galima nagrinėti kaip parametrines lygtis kreivės (1), be kita ko parametras yra
θ
.
{\displaystyle \theta .}
Tada
d
y
d
x
=
d
y
d
θ
d
x
d
θ
,
{\displaystyle {\frac {dy}{dx}}={\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}},}
d
2
y
d
x
2
=
d
d
x
(
d
y
d
θ
d
x
d
θ
)
=
d
d
θ
(
d
y
d
θ
d
x
d
θ
)
d
θ
d
x
=
d
x
d
θ
d
d
θ
(
d
y
d
θ
)
−
d
y
d
θ
d
d
θ
(
d
x
d
θ
)
(
d
x
d
θ
)
2
d
θ
d
x
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
2
d
θ
d
x
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
2
1
d
x
d
θ
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
3
.
{\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {d}{dx}}\left({\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}\right)={\frac {d}{d\theta }}\left({\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}\right){\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d}{d\theta }}({\frac {dy}{d\theta }})-{\frac {dy}{d\theta }}{\frac {d}{d\theta }}({\frac {dx}{d\theta }})}{({\frac {dx}{d\theta }})^{2}}}{\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{2}}}{\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{2}}}{\frac {1}{\frac {dx}{d\theta }}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{3}}}.}
d
x
d
θ
=
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
,
d
y
d
θ
=
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
,
{\displaystyle {\frac {dx}{d\theta }}={\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta ,\quad {\frac {dy}{d\theta }}={\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta ,}
d
2
x
d
θ
2
=
(
d
2
ρ
d
θ
2
cos
θ
−
d
ρ
d
θ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
=
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
,
{\displaystyle {\frac {d^{2}x}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -{\frac {d\rho }{d\theta }}\sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta ,}
d
2
y
d
θ
2
=
(
d
2
ρ
d
θ
2
sin
θ
+
d
ρ
d
θ
cos
θ
)
+
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
=
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
.
{\displaystyle {\frac {d^{2}y}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +{\frac {d\rho }{d\theta }}\cos \theta )+({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta .}
Įstatant paskutines išraiškas į formulę (1) praeito skyriaus, gausime formulę apskaičiavimui kreivio kreivės polinėse koordinatėse:
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
(
ϕ
′
)
3
|
[
1
+
(
ψ
′
ϕ
′
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
[
1
(
ϕ
′
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
)
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
⋅
(
1
(
ϕ
′
)
2
)
3
/
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
=
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|{\frac {\psi ''\phi '-\psi '\phi ''}{(\phi ')^{3}}}\right|}{\left[1+\left({\frac {\psi '}{\phi '}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\left[{\frac {1}{(\phi ')^{2}}}((\phi ')^{2}+(\psi ')^{2})\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\cdot ({\frac {1}{(\phi ')^{2}}})^{3/2}\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}=}
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
ϕ
′
2
+
ψ
′
2
]
3
2
=
|
d
2
y
d
θ
2
d
x
d
θ
−
d
y
d
θ
d
2
x
d
θ
2
|
[
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|\psi ''\phi '-\psi '\phi ''|}{[\phi '^{2}+\psi '^{2}]^{3 \over 2}}}={\frac {\left|{\frac {d^{2}y}{d\theta ^{2}}}{\frac {dx}{d\theta }}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}\right|}{\left[\left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}\right]^{3 \over 2}}}=}
=
|
(
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
(
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )|}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
(
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
−
{\displaystyle ={\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}-}
−
(
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
−
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
d
ρ
d
θ
sin
θ
+
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
−
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
−
ρ
cos
θ
ρ
cos
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle -{\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta -2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta +{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta -\rho \cos \theta \rho \cos \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
−
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
+
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
d
ρ
d
θ
sin
θ
−
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
+
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
+
ρ
cos
θ
ρ
cos
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {-{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta +2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta +2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta +\rho \cos \theta \rho \cos \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
−
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
+
ρ
cos
θ
ρ
cos
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta +\rho \cos \theta \rho \cos \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
2
(
d
ρ
d
θ
)
2
cos
2
θ
+
2
(
d
ρ
d
θ
)
2
sin
2
θ
−
ρ
d
2
ρ
d
θ
2
sin
2
θ
−
ρ
d
2
ρ
d
θ
2
cos
2
θ
+
ρ
2
sin
2
θ
+
ρ
2
cos
2
θ
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|2({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta +2({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta -\rho {\frac {d^{2}\rho }{d\theta ^{2}}}\sin ^{2}\theta -\rho {\frac {d^{2}\rho }{d\theta ^{2}}}\cos ^{2}\theta +\rho ^{2}\sin ^{2}\theta +\rho ^{2}\cos ^{2}\theta |}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
+
ρ
2
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}+\rho ^{2}|}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
(
d
ρ
d
θ
)
2
cos
2
θ
−
2
d
ρ
d
θ
cos
(
θ
)
ρ
sin
(
θ
)
+
ρ
2
sin
2
θ
)
+
(
(
d
ρ
d
θ
)
2
sin
2
θ
+
2
d
ρ
d
θ
sin
(
θ
)
ρ
cos
(
θ
)
+
ρ
2
cos
2
θ
)
]
3
2
=
{\displaystyle ={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[(({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta -2{\frac {d\rho }{d\theta }}\cos(\theta )\rho \sin(\theta )+\rho ^{2}\sin ^{2}\theta )+(({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta +2{\frac {d\rho }{d\theta }}\sin(\theta )\rho \cos(\theta )+\rho ^{2}\cos ^{2}\theta )]^{3 \over 2}}}=}
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
d
ρ
d
θ
)
2
cos
2
θ
+
(
d
ρ
d
θ
)
2
sin
2
θ
+
ρ
2
sin
2
θ
+
ρ
2
cos
2
θ
)
]
3
2
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
d
ρ
d
θ
)
2
+
ρ
2
]
3
2
=
|
ρ
2
+
2
(
ρ
′
)
2
−
ρ
ρ
″
|
(
ρ
2
+
(
ρ
′
)
2
)
3
/
2
.
(
4
)
{\displaystyle ={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta +({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta +\rho ^{2}\sin ^{2}\theta +\rho ^{2}\cos ^{2}\theta )]^{3 \over 2}}}={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[({\frac {d\rho }{d\theta }})^{2}+\rho ^{2}]^{3 \over 2}}}={\frac {|\rho ^{2}+2(\rho ')^{2}-\rho \rho ''|}{(\rho ^{2}+(\rho ')^{2})^{3/2}}}.\quad (4)}
Vaizdas:Kreivispav144.jpg 144 pav.
Nustatyti kreivį Archimedo spiralės
ρ
=
a
θ
(
a
>
0
)
{\displaystyle \rho =a\theta \;\;(a>0)}
laisvai pasirenktame taške (144 pav.).
Sprendimas .
d
ρ
d
θ
=
a
;
d
2
ρ
d
θ
2
=
0.
{\displaystyle {\frac {d\rho }{d\theta }}=a;\quad {\frac {d^{2}\rho }{d\theta ^{2}}}=0.}
Iš to seka,
K
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
=
|
a
2
θ
2
+
2
a
2
−
a
θ
⋅
0
|
(
a
2
θ
2
+
a
2
)
3
/
2
=
|
a
2
θ
2
+
2
a
2
|
a
3
(
θ
2
+
1
)
3
/
2
=
θ
2
+
2
a
(
θ
2
+
1
)
3
/
2
.
{\displaystyle K={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}={\frac {|a^{2}\theta ^{2}+2a^{2}-a\theta \cdot 0|}{(a^{2}\theta ^{2}+a^{2})^{3/2}}}={\frac {|a^{2}\theta ^{2}+2a^{2}|}{a^{3}(\theta ^{2}+1)^{3/2}}}={\frac {\theta ^{2}+2}{a(\theta ^{2}+1)^{3/2}}}.}
Pastebėsime, kad su didelėmis reikšmėmis
θ
{\displaystyle \theta }
turi vietą apytikslės lygybės:
θ
2
+
2
θ
2
≈
1
,
θ
2
+
1
θ
2
≈
1
;
{\displaystyle {\frac {\theta ^{2}+2}{\theta ^{2}}}\approx 1,\;\;{\frac {\theta ^{2}+1}{\theta ^{2}}}\approx 1;}
todėl, pakeičiant praeitoje formulėje
θ
2
+
2
{\displaystyle \theta ^{2}+2}
į
θ
2
{\displaystyle \theta ^{2}}
ir
θ
2
+
1
{\displaystyle \theta ^{2}+1}
į
θ
2
,
{\displaystyle \theta ^{2},}
gauname apytikslę formulę (didelėms reikšmėms
θ
{\displaystyle \theta }
):
K
≈
1
a
θ
2
(
θ
2
)
3
/
2
=
1
a
θ
.
{\displaystyle K\approx {\frac {1}{a}}{\frac {\theta ^{2}}{(\theta ^{2})^{3/2}}}={\frac {1}{a\theta }}.}
Tokiu budu, su didelėmis reikšmėmis
θ
{\displaystyle \theta }
Archimedo spiralė turi apytiksliai tą patį kreivį, kaip ir apskritimas spindulio
a
θ
{\displaystyle a\theta }
.
Apskaičiavimas kreivio linijos, užrašytos parametriškai erdvėje[ keisti ]
Kreivės užrašytos parametriškai
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
z
=
ω
(
t
)
,
{\displaystyle x=\phi (t),\quad y=\psi (t),\quad z=\omega (t),}
kreivio apskaičiavimo formulė yra:
K
2
=
1
R
2
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
]
3
;
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}{[(\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2}]^{3}}};}
K
=
1
R
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
;
{\displaystyle K={\frac {1}{R}}={\frac {\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}};}
R
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
.
{\displaystyle R={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}{\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}}.}
Galima naudotis ir šita formule:
K
2
=
1
R
2
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
(
(
ϕ
″
)
2
+
(
ψ
″
)
2
+
(
ω
″
)
2
)
−
(
ϕ
′
ϕ
″
+
ψ
′
ψ
″
+
ω
′
ω
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
.
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})((\phi '')^{2}+(\psi '')^{2}+(\omega '')^{2})-(\phi '\phi ''+\psi '\psi ''+\omega '\omega '')^{2}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3}}}.}
Kreivės liestinės vektorius taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra
a
→
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
.
{\displaystyle {\vec {a}}=\{\phi '(t);\psi '(t);\omega '(t)\}.}
Šis liestinės vektorius yra lygiagretus kreivės liestinei taške
M
(
x
M
;
y
M
;
z
M
)
.
{\displaystyle M(x_{M};y_{M};z_{M}).}
Erdvinės kreivės liestinės lygtis taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra (parametro t reikšmė turi būti tokia, kad ją įstčius į funkcijas gautusi taško
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
koordinatės):
x
−
x
M
ϕ
′
(
t
)
=
y
−
y
M
ψ
′
(
t
)
=
z
−
z
M
ω
′
(
t
)
;
{\displaystyle {\frac {x-x_{M}}{\phi '(t)}}={\frac {y-y_{M}}{\psi '(t)}}={\frac {z-z_{M}}{\omega '(t)}};}
arba
{
x
−
x
M
=
t
ϕ
′
(
t
)
,
y
−
y
M
=
t
ψ
′
(
t
)
,
z
−
z
M
=
t
ω
′
(
t
)
.
{\displaystyle {\begin{cases}x-x_{M}=t\phi '(t),&\\y-y_{M}=t\psi '(t),&\\z-z_{M}=t\omega '(t).&\end{cases}}}
1. Kreivės normalės vektorius (kreivio spindulio vektorius) taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra
b
→
=
{
−
2
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
{\displaystyle {\vec {b}}=\{-{\frac {2}{3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}}
tik toms parametrinėms funkcijoms kurių rodikliai p yra riboje
[
1
;
∞
)
,
{\displaystyle [1;\infty ),}
tai yra
t
p
,
1
≤
p
,
{\displaystyle t^{p},\;1\leq p,}
pavyzdžiui,
t
2
{\displaystyle t^{2}}
,
t
3
{\displaystyle t^{3}}
,
t
3
2
{\displaystyle t^{3 \over 2}}
,
t
5
.
{\displaystyle t^{5}.}
Skaičius
−
2
3
{\displaystyle -{\frac {2}{3}}}
prirašomas prie tos funkcijos, kurios rodiklis mažiausias, o kitoms dviems funkcijoms nuo t prirašoma
1
3
,
{\displaystyle {\frac {1}{3}},}
tik kai
1
≤
p
,
t
p
.
{\displaystyle 1\leq p,\;t^{p}.}
Pavyzdžiui, funkcija užrašyta parametriškai
ϕ
(
t
)
=
t
2
,
ψ
(
t
)
=
t
3
,
ω
(
t
)
=
t
4
,
{\displaystyle \phi (t)=t^{2},\;\psi (t)=t^{3},\;\omega (t)=t^{4},}
turi normalės vektorių
b
→
=
{
−
2
3
⋅
1
2
x
M
;
1
3
⋅
1
3
x
M
2
;
1
3
⋅
1
4
x
M
3
}
.
{\displaystyle {\vec {b}}=\{-{2 \over 3}\cdot {\frac {1}{2x_{M}}};{1 \over 3}\cdot {\frac {1}{3x_{M}^{2}}};{1 \over 3}\cdot {\frac {1}{4x_{M}^{3}}}\}.}
2. Kreivės užrašytos parametriškai
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
z
=
ω
(
t
)
,
{\displaystyle x=\phi (t),\;y=\psi (t),\;z=\omega (t),}
normalės vektorius yra
b
→
=
{
1
±
ϕ
′
(
t
)
;
1
±
ψ
′
(
t
)
;
1
±
ω
′
(
t
)
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{\pm \phi '(t)}};{\frac {1}{\pm \psi '(t)}};{\frac {1}{\pm \omega '(t)}}\}.}
Minusai rašomi tuo atveju, kai
p
<
1
,
t
p
.
{\displaystyle p<1,\;t^{p}.}
Pavyzdžiui, kreivė užrašyta parametriškai
ϕ
(
t
)
=
t
1
3
,
ψ
(
t
)
=
t
1
2
,
ω
(
t
)
=
t
,
{\displaystyle \phi (t)=t^{1 \over 3},\;\psi (t)=t^{1 \over 2},\;\omega (t)=t,}
turi liestinės vektorių
a
→
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
=
{
t
−
2
3
3
;
1
2
t
;
1
}
.
{\displaystyle {\vec {a}}=\{\phi '(t);\psi '(t);\omega '(t)\}=\{{\frac {t^{-{\frac {2}{3}}}}{3}};{\frac {1}{2{\sqrt {t}}}};1\}.}
Šios kreivės normalės vektorius yra:
b
→
=
{
−
1
3
ϕ
′
(
t
)
;
−
1
3
ψ
′
(
t
)
;
2
3
ω
′
(
t
)
}
=
{
−
1
3
⋅
3
t
2
3
;
−
1
3
⋅
2
t
;
2
3
}
.
{\displaystyle {\vec {b}}=\{-{\frac {1}{3\phi '(t)}};-{\frac {1}{3\psi '(t)}};{\frac {2}{3\omega '(t)}}\}=\{-{\frac {1}{3}}\cdot 3t^{2 \over 3};-{\frac {1}{3}}\cdot 2{\sqrt {t}};{\frac {2}{3}}\}.}
Skaičius
2
3
{\displaystyle {\frac {2}{3}}}
prirašomas ten kur pliusas, jeigu kiti du minusai; arba ten kur minusas, jei kiti du pliusai.
Sudetingesnis pavyzdis, kai kreivė užrašyta parametriškai
ϕ
(
t
)
=
t
,
ψ
(
t
)
=
t
1
3
,
ω
(
t
)
=
t
3
,
{\displaystyle \phi (t)=t,\;\psi (t)=t^{1 \over 3},\;\omega (t)=t^{3},}
tuomet patikrinę su
t
=
5
{\displaystyle t=5}
, kad
arctan
ψ
(
5
)
ϕ
(
5
)
=
arctan
5
1
3
5
=
18.8804412
∘
,
{\displaystyle \arctan {\frac {\psi (5)}{\phi (5)}}=\arctan {\frac {5^{1 \over 3}}{5}}=18.8804412^{\circ },}
o
arctan
ω
(
5
)
ϕ
(
5
)
=
arctan
5
3
5
=
arctan
25
=
87.70938996
∘
{\displaystyle \arctan {\frac {\omega (5)}{\phi (5)}}=\arctan {\frac {5^{3}}{5}}=\arctan 25=87.70938996^{\circ }}
ir kad
90
−
18.88
=
71.12
<
87.709
{\displaystyle 90-18.88=71.12<87.709}
darome išvada, kad šios kreivės normalės vektorius (kai t>1) yra šitoks:
b
→
=
{
1
3
ϕ
′
(
t
)
;
2
−
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
=
{
1
3
;
−
2
t
2
3
;
1
9
t
2
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{3\phi '(t)}};{\frac {2}{-3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}=\{{\frac {1}{3}};-2t^{2 \over 3};{\frac {1}{9t^{2}}}\}.}
Bet galėtų būti ir toks (arba šis pavyzdis iš vis neturi normalės vektoriaus):
b
→
=
{
1
−
3
ϕ
′
(
t
)
;
1
−
3
ψ
′
(
t
)
;
2
3
ω
′
(
t
)
}
=
{
−
1
3
;
−
t
2
3
;
2
9
t
2
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{-3\phi '(t)}};{\frac {1}{-3\psi '(t)}};{\frac {2}{3\omega '(t)}}\}=\{-{\frac {1}{3}};-t^{2 \over 3};{\frac {2}{9t^{2}}}\}.}
Pavyzdžiui, funkcija užrašyta parametriškai
ϕ
(
t
)
=
t
1
3
,
ψ
(
t
)
=
t
1
2
,
ω
(
t
)
=
t
3
,
{\displaystyle \phi (t)=t^{1 \over 3},\;\psi (t)=t^{1 \over 2},\;\omega (t)=t^{3},}
turi normalės vektorių:
b
→
=
{
1
−
3
ϕ
′
(
t
)
;
1
−
3
ψ
′
(
t
)
;
2
3
ω
′
(
t
)
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{-3\phi '(t)}};{\frac {1}{-3\psi '(t)}};{\frac {2}{3\omega '(t)}}\};}
b
→
=
{
−
1
3
⋅
1
1
3
t
2
3
;
1
3
⋅
1
−
1
2
t
;
2
3
⋅
1
3
t
2
}
,
{\displaystyle {\vec {b}}=\{-{\frac {1}{3}}\cdot {\frac {1}{\frac {1}{3{\sqrt[{3}]{t^{2}}}}}};{\frac {1}{3}}\cdot {\frac {1}{-{\frac {1}{2{\sqrt {t}}}}}};{\frac {2}{3}}\cdot {\frac {1}{3t^{2}}}\},}
b
→
=
{
−
1
3
⋅
3
t
2
3
;
1
3
⋅
(
−
2
)
t
;
2
3
⋅
1
3
t
2
}
,
{\displaystyle {\vec {b}}=\{-{\frac {1}{3}}\cdot 3t^{2 \over 3};{\frac {1}{3}}\cdot (-2){\sqrt {t}};{\frac {2}{3}}\cdot {\frac {1}{3t^{2}}}\},}
b
→
=
{
−
t
2
3
;
−
2
t
3
;
2
9
t
2
}
.
{\displaystyle {\vec {b}}=\{-{\sqrt[{3}]{t^{2}}};-{\frac {2{\sqrt {t}}}{3}};{\frac {2}{9t^{2}}}\}.}
Ar prirašyti
2
3
{\displaystyle {\frac {2}{3}}}
ar
1
3
{\displaystyle {\frac {1}{3}}}
priklauso nuo to kiek yra pliusų ir kiek yra minusų. Jeigu minusų du, o pliusas vienas, tada
2
3
{\displaystyle {\frac {2}{3}}}
prirašyti ten, kuri koordinatė yra su pliuso ženklu. Jeigu du pliusai ir vienas minusas tada
2
3
{\displaystyle {\frac {2}{3}}}
prirašoma ten, kur yra minusas.
Kitas pavyzdis, kreivės užrašytos parametriškai
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
,
ψ
(
t
)
=
t
1
2
{\displaystyle \psi (t)=t^{1 \over 2}}
,
ω
(
t
)
=
t
3
{\displaystyle \omega (t)=t^{3}}
, normalės vektorius yra:
b
→
=
{
1
3
ϕ
′
(
t
)
;
2
−
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{3\phi '(t)}};{\frac {2}{-3\psi '(t)}};{\frac {1}{3\omega '(t)}}\};}
b
→
=
{
1
3
;
2
3
⋅
1
−
1
2
t
;
1
3
⋅
1
3
t
2
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{3}};{\frac {2}{3}}\cdot {\frac {1}{-{\frac {1}{2{\sqrt {t}}}}}};{\frac {1}{3}}\cdot {\frac {1}{3t^{2}}}\};}
b
→
=
{
1
3
;
−
4
t
3
;
1
9
t
2
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{3}};-{\frac {4{\sqrt {t}}}{3}};{\frac {1}{9t^{2}}}\}.}
Dar vienas pavyzdis, kreivės užrašytos parametriškai
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
,
ψ
(
t
)
=
t
−
2
{\displaystyle \psi (t)=t^{-2}}
,
ω
(
t
)
=
t
−
3
{\displaystyle \omega (t)=t^{-3}}
, normalės vektorius yra:
b
→
=
{
2
3
ϕ
′
(
t
)
;
1
−
3
ψ
′
(
t
)
;
1
−
3
ω
′
(
t
)
}
=
{
2
3
;
−
1
3
⋅
1
(
−
2
)
t
−
3
;
−
1
3
⋅
1
(
−
3
)
t
−
4
}
=
{
2
3
;
t
3
6
;
t
4
9
}
,
{\displaystyle {\vec {b}}=\{{\frac {2}{3\phi '(t)}};{\frac {1}{-3\psi '(t)}};{\frac {1}{-3\omega '(t)}}\}=\{{\frac {2}{3}};-{\frac {1}{3}}\cdot {\frac {1}{(-2)t^{-3}}};-{\frac {1}{3}}\cdot {\frac {1}{(-3)t^{-4}}}\}=\{{\frac {2}{3}};{\frac {t^{3}}{6}};{\frac {t^{4}}{9}}\},}
bet tai reiškia, kad visur pliusai, o du minusus turi liestinės vektorius
a
→
=
{
1
;
−
2
t
−
3
;
−
3
t
−
4
}
,
{\displaystyle {\vec {a}}=\{1;-2t^{-3};-3t^{-4}\},}
todėl ir atitinkamai prirašomos 2/3, kad šių vektorių skaliarinė sandauga būtų lygi nuliui.
Todėl galime užrašyti kreivės normalės lygtį:
{
x
−
x
M
=
2
t
±
3
ϕ
′
(
t
)
,
y
−
y
M
=
t
±
3
ψ
′
(
t
)
,
z
−
z
M
=
t
±
3
ω
′
(
t
)
;
{\displaystyle {\begin{cases}x-x_{M}={\frac {2t}{\pm 3\phi '(t)}},&\\y-y_{M}={\frac {t}{\pm 3\psi '(t)}},&\\z-z_{M}={\frac {t}{\pm 3\omega '(t)}};&\end{cases}}}
arba
x
−
x
M
2
±
3
ϕ
′
(
t
)
=
y
−
y
M
1
±
3
ψ
′
(
t
)
=
z
−
z
M
1
±
3
ω
′
(
t
)
,
{\displaystyle {\frac {x-x_{M}}{\frac {2}{\pm 3\phi '(t)}}}={\frac {y-y_{M}}{\frac {1}{\pm 3\psi '(t)}}}={\frac {z-z_{M}}{\frac {1}{\pm 3\omega '(t)}}},}
±
3
(
x
−
x
M
)
ϕ
′
(
t
)
2
=
±
3
(
y
−
y
M
)
ψ
′
(
t
)
=
±
3
(
z
−
z
M
)
ω
′
(
t
)
.
{\displaystyle \pm {\frac {3(x-x_{M})\phi '(t)}{2}}=\pm 3(y-y_{M})\psi '(t)=\pm 3(z-z_{M})\omega '(t).}
Turime lygčių sistemą:
{
±
3
2
(
x
−
x
M
)
ϕ
′
(
t
)
=
±
3
(
y
−
y
M
)
ψ
′
(
t
)
=
±
3
(
z
−
z
M
)
ω
′
(
t
)
,
(
x
−
x
M
)
2
+
(
y
−
y
M
)
2
+
(
z
−
z
M
)
2
=
1
K
2
.
{\displaystyle {\begin{cases}\pm {\frac {3}{2}}(x-x_{M})\phi '(t)=\pm 3(y-y_{M})\psi '(t)=\pm 3(z-z_{M})\omega '(t),&\\(x-x_{M})^{2}+(y-y_{M})^{2}+(z-z_{M})^{2}={\frac {1}{K^{2}}}.&\end{cases}}}
Parametro t reikšmė turi būti tokia, kad ją įstačius į funkcijas
ϕ
(
t
)
,
ψ
(
t
)
,
ω
(
t
)
{\displaystyle \phi (t),\;\psi (t),\;\omega (t)}
būtų gautos taško
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
koordinatės.
Gauname, kad
y
−
y
M
=
±
ϕ
′
(
t
)
(
x
−
x
M
)
±
2
ψ
′
(
t
)
;
{\displaystyle y-y_{M}={\frac {\pm \phi '(t)(x-x_{M})}{\pm 2\psi '(t)}};}
z
−
z
M
=
±
ϕ
′
(
t
)
(
x
−
x
M
)
±
2
ω
′
(
t
)
.
{\displaystyle z-z_{M}={\frac {\pm \phi '(t)(x-x_{M})}{\pm 2\omega '(t)}}.}
Įstatę į antrą sistemos lygtį gauname:
(
x
−
x
M
)
2
+
(
±
ϕ
′
(
t
)
(
x
−
x
M
)
±
2
ψ
′
(
t
)
)
2
+
(
±
ϕ
′
(
t
)
(
x
−
x
M
)
±
2
ω
′
(
t
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+\left({\frac {\pm \phi '(t)(x-x_{M})}{\pm 2\psi '(t)}}\right)^{2}+\left({\frac {\pm \phi '(t)(x-x_{M})}{\pm 2\omega '(t)}}\right)^{2}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
+
(
ϕ
′
(
t
)
)
2
(
x
−
x
M
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
(
x
−
x
M
)
2
4
(
ω
′
(
t
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+{\frac {(\phi '(t))^{2}(x-x_{M})^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}(x-x_{M})^{2}}{4(\omega '(t))^{2}}}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
(
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
)
=
R
2
.
{\displaystyle (x-x_{M})^{2}\left(1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}\right)=R^{2}.}
Išsprendus kvadratinę lygtį
(
x
2
−
2
x
x
M
+
x
M
2
)
(
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
)
−
R
2
=
0
,
{\displaystyle (x^{2}-2xx_{M}+x_{M}^{2})\left(1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}\right)-R^{2}=0,}
x
2
(
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
)
−
2
x
x
M
(
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
)
+
x
M
2
(
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
)
−
R
2
=
0
,
{\displaystyle x^{2}\left(1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}\right)-2xx_{M}\left(1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}\right)+x_{M}^{2}\left(1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}\right)-R^{2}=0,}
surandama kreivio centro
C
(
x
C
;
y
C
;
z
C
)
{\displaystyle C(x_{C};y_{C};z_{C})}
koordinatė
x
C
.
{\displaystyle x_{C}.}
Analogiškai surandama ir
y
C
{\displaystyle y_{C}}
kordinatė
x
−
x
M
=
±
2
ψ
′
(
t
)
(
y
−
y
M
)
±
ϕ
′
(
t
)
,
{\displaystyle x-x_{M}={\frac {\pm 2\psi '(t)(y-y_{M})}{\pm \phi '(t)}},}
z
−
z
M
=
±
ψ
′
(
t
)
(
y
−
y
M
)
±
ω
′
(
t
)
;
{\displaystyle z-z_{M}={\frac {\pm \psi '(t)(y-y_{M})}{\pm \omega '(t)}};}
(
±
2
ψ
′
(
t
)
(
y
−
y
M
)
±
ϕ
′
(
t
)
)
2
+
(
y
−
y
M
)
2
+
(
±
ψ
′
(
t
)
(
y
−
y
M
)
±
ω
′
(
t
)
)
2
=
1
K
2
,
{\displaystyle \left({\frac {\pm 2\psi '(t)(y-y_{M})}{\pm \phi '(t)}}\right)^{2}+(y-y_{M})^{2}+\left({\frac {\pm \psi '(t)(y-y_{M})}{\pm \omega '(t)}}\right)^{2}={\frac {1}{K^{2}}},}
4
(
ψ
′
(
t
)
)
2
(
y
−
y
M
)
2
(
ϕ
′
(
t
)
)
2
+
(
y
−
y
M
)
2
+
(
ψ
′
(
t
)
)
2
(
y
−
y
M
)
2
(
ω
′
(
t
)
)
2
=
1
K
2
,
{\displaystyle {\frac {4(\psi '(t))^{2}(y-y_{M})^{2}}{(\phi '(t))^{2}}}+(y-y_{M})^{2}+{\frac {(\psi '(t))^{2}(y-y_{M})^{2}}{(\omega '(t))^{2}}}={\frac {1}{K^{2}}},}
(
y
−
y
M
)
2
(
4
(
ψ
′
(
t
)
)
2
(
ϕ
′
(
t
)
)
2
+
1
+
(
ψ
′
(
t
)
)
2
(
ω
′
(
t
)
)
2