Integralų lentelė
Iš Wikibooks.
Jump to navigation
Jump to search
Pagrindiniai ir dažniausiai pasitaikantys
integralai
:
∫
0
d
x
=
C
{\displaystyle \int 0\;{\mathsf {d}}x=C}
∫
a
d
x
=
a
x
+
C
{\displaystyle \int a\;{\mathsf {d}}x=ax+C}
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
{\displaystyle \int x^{n}\;{\mathsf {d}}x={\frac {x^{n+1}}{n+1}}+C}
∫
d
x
x
=
ln
|
x
|
+
C
{\displaystyle \int {\frac {{\mathsf {d}}x}{x}}=\ln \left|x\right|+C}
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int {\mathsf {e}}^{x}\;{\mathsf {d}}x={\mathsf {e}}^{x}+C}
∫
a
x
d
x
=
a
x
ln
a
+
C
{\displaystyle \int a^{x}\;{\mathsf {d}}x={\frac {a^{x}}{\ln a}}+C}
∫
d
x
x
2
+
a
2
=
1
a
arctan
x
a
+
C
,
a
≠
0
{\displaystyle \int {\frac {{\mathsf {d}}x}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}+C,a\not =0}
∫
1
a
2
−
x
2
d
x
=
arcsin
x
a
+
C
,
a
>
0
{\displaystyle \int {\frac {1}{\sqrt {a^{2}-x^{2}}}}\;{\mathsf {d}}x=\arcsin {\frac {x}{a}}+C,\;a>0}
∫
d
x
x
2
−
a
2
=
1
2
a
ln
|
x
−
a
x
+
a
|
+
C
,
a
≠
0
{\displaystyle \int {\frac {{\mathsf {d}}x}{x^{2}-a^{2}}}={\frac {1}{2a}}\ln \left|{\frac {x-a}{x+a}}\right|+C,\;a\not =0}
∫
d
x
x
2
±
a
2
=
ln
|
x
+
x
2
±
a
2
|
+
C
,
a
≠
0
{\displaystyle \int {\frac {{\mathsf {d}}x}{\sqrt {x^{2}\pm a^{2}}}}=\ln \left|x+{\sqrt {x^{2}\pm a^{2}}}\right|+C,\;a\not =0}
∫
a
2
−
x
2
d
x
=
x
2
a
2
−
x
2
+
x
2
a
arcsin
x
a
+
C
{\displaystyle \int {\sqrt {a^{2}-x^{2}}}\;{\mathsf {d}}x={\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+{\frac {x^{2}}{a}}\arcsin {\frac {x}{a}}+C}
∫
x
2
±
a
2
d
x
=
x
2
a
2
±
x
2
±
a
2
2
ln
|
x
+
x
2
±
a
2
|
+
C
{\displaystyle \int {\sqrt {x^{2}\pm a^{2}}}\;{\mathsf {d}}x={\frac {x}{2}}{\sqrt {a^{2}\pm x^{2}}}\pm {\frac {a^{2}}{2}}\ln \left|x+{\sqrt {x^{2}\pm a^{2}}}\right|+C}
∫
a
x
+
b
d
x
=
(
2
b
3
a
+
2
x
3
)
a
x
+
b
+
C
{\displaystyle \int {\sqrt {ax+b}}\;{\mathsf {d}}x=\left({2b \over 3a}+{2x \over 3}\right){\sqrt {ax+b}}+C}
∫
a
x
+
b
d
x
=
2
3
a
(
a
x
+
b
)
3
/
2
+
C
{\displaystyle \int {\sqrt {ax+b}}dx={2 \over 3a}(ax+b)^{3/2}+C}
Trigonometrinių reiškinių integralai
[
keisti
]
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
{\displaystyle \int \sin ax\;{\mathsf {d}}x=-{\frac {1}{a}}\cos ax+C}
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
{\displaystyle \int \cos ax\;{\mathsf {d}}x={\frac {1}{a}}\sin ax+C}
∫
tan
x
d
x
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan x\;{\mathsf {d}}x=-\ln |\cos x|+C}
∫
c
t
g
x
d
x
=
ln
|
sin
x
|
+
C
{\displaystyle \int ctgx\;{\mathsf {d}}x=\ln |\sin x|+C}
∫
d
x
sin
x
=
ln
|
tan
x
2
|
+
C
{\displaystyle \int {\frac {{\mathsf {d}}x}{\sin x}}=\ln \left|\tan {\frac {x}{2}}\right|+C}
∫
d
x
cos
x
=
ln
|
tan
(
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {{\mathsf {d}}x}{\cos x}}=\ln \left|\tan \left({\frac {x}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
d
x
sin
2
x
=
−
c
t
g
x
+
C
{\displaystyle \int {\frac {{\mathsf {d}}x}{\sin ^{2}x}}=-ctgx+C}
∫
d
x
cos
2
x
=
tan
x
+
C
{\displaystyle \int {\frac {{\mathsf {d}}x}{\cos ^{2}x}}=\tan x+C}
Taip pat skaitykite
[
keisti
]
Integravimo metodai
Nuorodos
[
keisti
]
integralų lentelė
integralų lentelė su įrodymais
http://www.mathwords.com/i/integral_table.htm
Naršymo meniu
Asmeniniai įrankiai
Neprisijungęs
Aptarimas
Indėlis
Sukurti paskyrą
Prisijungti
Vardų sritys
Puslapis
Aptarimas
Variantai
Peržiūros
Skaityti
Keisti
Istorija
Daugiau
Paieška
Naršymas
Pagrindinis puslapis
Bendruomenės portalas
Naujausi keitimai
Atsitiktinis puslapis
Pagalba
Paaukokite
Įrankiai
Susiję puslapiai
Susiję keitimai
Įkelti rinkmeną
Specialieji puslapiai
Nuolatinė nuoroda
Puslapio informacija
Cituoti šį puslapį
Vikiduomenys įrašas
Spausdinti/eksportuoti
Kurti knygą
Parsisiųsti kaip PDF
Versija spausdinimui
Kituose projektuose
Vikipedija
Kitomis kalbomis
Pridėti nuorodas