Gauso formule atrodo kaip pilstymas is tuscio i kiaura.
Vaizdas:Pavirsinisintris427.jpg 427.
Apskaičiuoti tūrį V kūno (piramidės), kurį riboja plokštuma
z
=
6
−
2
x
−
3
y
{\displaystyle z=6-2x-3y}
ir sienos
x
=
0
{\displaystyle x=0}
,
y
=
0
{\displaystyle y=0}
,
z
=
0
{\displaystyle z=0}
. (pav. 427). Trikampio ABC Viršunės yra A(3; 0; 0), B(0; 2; 0) ir C(0; 0; 6). Piramidės AOBC viršunės yra A(3; 0; 0), O(0; 0; 0), B(0; 2; 0) ir C(0; 0; 6). Iš karto matosi, kad piramidės tūris yra
V
=
1
3
⋅
S
Δ
A
B
C
⋅
h
=
1
3
⋅
1
2
(
O
A
⋅
O
B
)
⋅
O
C
=
1
6
⋅
(
3
⋅
2
)
⋅
6
=
6.
{\displaystyle V={\frac {1}{3}}\cdot S_{\Delta ABC}\cdot h={\frac {1}{3}}\cdot {\frac {1}{2}}(OA\cdot OB)\cdot OC={\frac {1}{6}}\cdot (3\cdot 2)\cdot 6=6.}
Randame:
x
=
6
−
3
y
−
z
2
=
3
−
3
y
+
z
2
,
{\displaystyle x={\frac {6-3y-z}{2}}=3-{\frac {3y+z}{2}},}
y
=
6
−
2
x
−
z
3
=
2
−
2
x
+
z
3
.
{\displaystyle y={\frac {6-2x-z}{3}}=2-{\frac {2x+z}{3}}.}
Dar Randame:
∬
S
x
d
y
d
z
=
∫
0
2
d
y
∫
0
6
x
d
z
=
∫
0
2
d
y
∫
0
6
(
3
−
3
y
+
z
2
)
d
z
=
∫
0
2
d
y
∫
0
6
(
3
−
3
y
2
−
z
2
)
d
z
=
{\displaystyle \iint _{S}xdydz=\int _{0}^{2}dy\int _{0}^{6}xdz=\int _{0}^{2}dy\int _{0}^{6}(3-{\frac {3y+z}{2}})dz=\int _{0}^{2}dy\int _{0}^{6}(3-{\frac {3y}{2}}-{\frac {z}{2}})dz=}
=
∫
0
2
d
y
(
3
z
−
3
y
z
2
−
z
2
4
)
|
0
6
=
∫
0
2
(
3
⋅
6
−
3
y
⋅
6
2
−
6
2
4
)
d
y
=
∫
0
2
(
18
−
18
y
2
−
36
4
)
d
y
=
∫
0
2
(
18
−
9
y
−
9
)
d
y
=
{\displaystyle =\int _{0}^{2}dy(3z-{\frac {3yz}{2}}-{\frac {z^{2}}{4}})|_{0}^{6}=\int _{0}^{2}(3\cdot 6-{\frac {3y\cdot 6}{2}}-{\frac {6^{2}}{4}})dy=\int _{0}^{2}(18-{\frac {18y}{2}}-{\frac {36}{4}})dy=\int _{0}^{2}(18-9y-9)dy=}
=
∫
0
2
(
9
−
9
y
)
d
y
=
(
9
y
−
9
y
2
2
)
|
0
2
=
9
⋅
2
−
9
⋅
2
2
2
=
18
−
18
=
0.
{\displaystyle =\int _{0}^{2}(9-9y)dy=(9y-{\frac {9y^{2}}{2}})|_{0}^{2}=9\cdot 2-{\frac {9\cdot 2^{2}}{2}}=18-18=0.}
∬
S
y
d
z
d
x
=
∫
0
3
d
x
∫
0
6
y
d
z
=
∫
0
3
d
x
∫
0
6
(
2
−
2
x
+
z
3
)
d
z
=
∫
0
3
d
x
∫
0
6
(
2
−
2
x
3
−
z
3
)
d
z
=
{\displaystyle \iint _{S}ydzdx=\int _{0}^{3}dx\int _{0}^{6}ydz=\int _{0}^{3}dx\int _{0}^{6}(2-{\frac {2x+z}{3}})dz=\int _{0}^{3}dx\int _{0}^{6}(2-{\frac {2x}{3}}-{\frac {z}{3}})dz=}
=
∫
0
3
d
x
(
2
z
−
2
x
z
3
−
z
2
6
)
|
0
6
=
∫
0
3
(
2
⋅
6
−
2
x
⋅
6
3
−
6
2
6
)
d
x
=
∫
0
3
(
12
−
4
x
−
6
)
d
x
=
∫
0
3
(
6
−
4
x
)
d
x
=
(
6
x
−
2
x
2
)
|
0
3
=
6
⋅
3
−
2
⋅
3
2
=
18
−
18
=
0.
{\displaystyle =\int _{0}^{3}dx(2z-{\frac {2xz}{3}}-{\frac {z^{2}}{6}})|_{0}^{6}=\int _{0}^{3}(2\cdot 6-{\frac {2x\cdot 6}{3}}-{\frac {6^{2}}{6}})dx=\int _{0}^{3}(12-4x-6)dx=\int _{0}^{3}(6-4x)dx=(6x-2x^{2})|_{0}^{3}=6\cdot 3-2\cdot 3^{2}=18-18=0.}
V
=
1
3
∬
S
x
d
y
d
z
+
y
d
z
d
x
+
z
d
x
d
y
=
0
+
0
+
0
=
0.
{\displaystyle V={\frac {1}{3}}\iint _{S}xdydz+ydzdx+zdxdy=0+0+0=0.}
Trikampio plotą galima surasti ir klasikiniu budu. Ieškomas plotas yra trikampis ABC , kurio taškai yra A(3; 0; 0), B(0; 2; 0) ir C(0; 0; 6). Pavadiname atkarpas AB=a, BC=b, CA=c; OA=d=3, OB=e=2, OC=f=6. Koordinačių pradžios taškas yra O(0; 0; 0). Randame trikampio ABC kraštinių ilgius:
a
=
d
2
+
e
2
=
3
2
+
2
2
=
9
+
4
=
13
=
3
,
605551275
;
{\displaystyle a={\sqrt {d^{2}+e^{2}}}={\sqrt {3^{2}+2^{2}}}={\sqrt {9+4}}={\sqrt {13}}=3,605551275;}
b
=
e
2
+
f
2
=
2
2
+
6
2
=
4
+
36
=
40
=
2
10
=
6
,
32455532
;
{\displaystyle b={\sqrt {e^{2}+f^{2}}}={\sqrt {2^{2}+6^{2}}}={\sqrt {4+36}}={\sqrt {40}}=2{\sqrt {10}}=6,32455532;}
c
=
d
2
+
f
2
=
3
2
+
6
2
=
9
+
36
=
45
=
3
5
=
6
,
708203933.
{\displaystyle c={\sqrt {d^{2}+f^{2}}}={\sqrt {3^{2}+6^{2}}}={\sqrt {9+36}}={\sqrt {45}}=3{\sqrt {5}}=6,708203933.}
Toliau randame trikampio ABC pusperimetrį
p
=
a
+
b
+
c
2
=
13
+
40
+
45
2
=
8
,
319155264
{\displaystyle p={\frac {a+b+c}{2}}={\frac {{\sqrt {13}}+{\sqrt {40}}+{\sqrt {45}}}{2}}=8,319155264}
ir plotą:
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
=
8
,
319155264
(
8
,
319155264
−
13
)
(
8
,
319155264
−
40
)
(
8
,
319155264
−
45
)
=
{\displaystyle S={\sqrt {p(p-a)(p-b)(p-c)}}={\sqrt {8,319155264(8,319155264-{\sqrt {13}})(8,319155264-{\sqrt {40}})(8,319155264-{\sqrt {45}})}}=}
=
8.319155264
⋅
4.713603989
⋅
1.994599944
⋅
1.610951332
=
126
=
11.22497216.
{\displaystyle ={\sqrt {8.319155264\cdot 4.713603989\cdot 1.994599944\cdot 1.610951332}}={\sqrt {126}}=11.22497216.}
Vadinasi šiame pavyzdyje ieškomas buvo ne trikampio plotas.
Pavyzdis . Apskaičiuoti integralą
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy}
pagal išorinę pusę sferos
x
2
+
y
2
+
z
2
=
R
2
.
{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.}
Taikydami formulę Gauso - Ostragradksio, gauname:
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
=
∭
V
(
3
x
2
+
3
y
2
+
3
z
2
)
d
x
d
y
d
z
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
∫
0
R
ρ
4
d
ρ
=
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy=\iiint _{V}(3x^{2}+3y^{2}+3z^{2})dxdydz=3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta \int _{0}^{R}\rho ^{4}d\rho =}
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
ρ
5
5
|
0
R
=
3
⋅
R
5
5
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
=
3
R
5
5
∫
0
2
π
d
ϕ
sin
θ
|
−
π
2
π
2
=
3
R
5
5
∫
0
2
π
(
sin
π
2
−
sin
−
π
2
)
d
ϕ
=
{\displaystyle =3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta {\frac {\rho ^{5}}{5}}|_{0}^{R}=3\cdot {\frac {R^{5}}{5}}\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }d\phi \;\sin \theta |_{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(\sin {\frac {\pi }{2}}-\sin {\frac {-\pi }{2}})d\phi =}
=
3
R
5
5
∫
0
2
π
(
1
−
(
−
1
)
)
d
ϕ
=
6
R
5
5
ϕ
|
0
2
π
=
6
R
5
5
⋅
2
π
=
12
π
R
5
5
.
{\displaystyle ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(1-(-1))d\phi ={\frac {6R^{5}}{5}}\phi |_{0}^{2\pi }={\frac {6R^{5}}{5}}\cdot 2\pi ={\frac {12\pi R^{5}}{5}}.}
Patikrinsime apskaičiuodami
∬
S
x
3
d
y
d
z
,
∬
S
y
3
d
z
d
x
{\displaystyle \iint _{S}x^{3}\mathbf {d} y\mathbf {d} z,\;\iint _{S}y^{3}\mathbf {d} z\mathbf {d} x}
ir
∬
S
x
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}\mathbf {d} x\mathbf {d} y}
sumą.
x
2
=
R
2
−
y
2
−
z
2
,
{\displaystyle x^{2}=R^{2}-y^{2}-z^{2},}
x
=
R
2
−
y
2
−
z
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}-z^{2}}}.}
V
x
=
∬
S
x
3
d
y
d
z
=
∬
S
(
R
2
−
y
2
−
z
2
)
3
d
y
d
z
=
∬
S
(
R
2
−
ρ
2
)
3
d
ρ
d
ϕ
=
{\displaystyle V_{x}=\iint _{S}x^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-y^{2}-z^{2}}}\right)^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-\rho ^{2}}}\right)^{3}\mathbf {d} \rho \mathbf {d} \phi =}
=
∫
0
2
π
(
∫
0
R
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
.
{\displaystyle =\int _{0}^{2\pi }\left(\int _{0}^{R}{\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi .}
Pasinaudodami internetiniu integratoriumi , gauname, kad
∫
0
R
(
R
2
−
ρ
2
)
3
d
ρ
=
1
8
(
ρ
(
5
R
2
−
2
ρ
2
)
R
2
−
ρ
2
+
3
R
4
arctan
ρ
R
2
−
ρ
2
)
|
0
R
.
{\displaystyle \int _{0}^{R}{\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho ={\frac {1}{8}}\left(\rho (5R^{2}-2\rho ^{2}){\sqrt {R^{2}-\rho ^{2}}}+3R^{4}\arctan {\frac {\rho }{\sqrt {R^{2}-\rho ^{2}}}}\right)|_{0}^{R}.}
Toliau pritaikydami ribas, kai
ρ
{\displaystyle \rho }
artėja į
R
{\displaystyle R}
, gauname:
∫
0
R
(
R
2
−
ρ
2
)
3
d
ρ
=
1
8
(
R
(
5
R
2
−
2
R
2
)
R
2
−
R
2
+
3
R
4
arctan
R
R
2
−
ρ
2
)
|
0
R
=
{\displaystyle \int _{0}^{R}{\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho ={\frac {1}{8}}\left(R(5R^{2}-2R^{2}){\sqrt {R^{2}-R^{2}}}+3R^{4}\arctan {\frac {R}{\sqrt {R^{2}-\rho ^{2}}}}\right)|_{0}^{R}=}
=
1
8
(
3
R
3
⋅
0
+
3
R
4
arctan
R
lim
ρ
→
R
(
R
2
−
ρ
2
)
)
|
0
R
=
1
8
(
0
+
3
R
4
arctan
R
0.00000000001
)
=
{\displaystyle ={\frac {1}{8}}\left(3R^{3}\cdot {\sqrt {0}}+3R^{4}\arctan {\frac {R}{\lim _{\rho \to R}({\sqrt {R^{2}-\rho ^{2}}})}}\right)|_{0}^{R}={\frac {1}{8}}\left(0+3R^{4}\arctan {\frac {R}{0.00000000001}}\right)=}
=
1
8
(
3
R
4
arctan
(
∞
)
)
.
{\displaystyle ={\frac {1}{8}}\left(3R^{4}\arctan(\infty )\right).}
Kadangi,
lim
a
→
∞
=
arctan
(
a
)
=
π
{\displaystyle \lim _{a\to \infty }=\arctan(a)=\pi }
, tai
arctan
(
∞
)
=
π
.
{\displaystyle \arctan(\infty )=\pi .}
Todėl,
∫
0
R
(
R
2
−
ρ
2
)
3
d
ρ
=
3
8
R
4
π
.
{\displaystyle \int _{0}^{R}{\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho ={\frac {3}{8}}R^{4}\pi .}
Vadinasi,
V
x
=
∬
S
x
3
d
y
d
z
=
∫
0
2
π
(
∫
0
R
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
=
∫
0
2
π
3
8
R
4
π
d
ϕ
=
3
8
R
4
π
ϕ
0
2
π
=
3
8
R
4
π
ϕ
|
0
2
π
=
3
8
R
4
π
⋅
2
π
=
3
4
R
4
π
2
.
{\displaystyle V_{x}=\iint _{S}x^{3}\mathbf {d} y\mathbf {d} z=\int _{0}^{2\pi }\left(\int _{0}^{R}{\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi =\int _{0}^{2\pi }{\frac {3}{8}}R^{4}\pi \mathbf {d} \phi ={\frac {3}{8}}R^{4}\pi \phi _{0}^{2\pi }={\frac {3}{8}}R^{4}\pi \phi |_{0}^{2\pi }={\frac {3}{8}}R^{4}\pi \cdot 2\pi ={\frac {3}{4}}R^{4}\pi ^{2}.}
V
=
3
V
x
=
9
4
R
4
π
2
.
{\displaystyle V=3V_{x}={\frac {9}{4}}R^{4}\pi ^{2}.}
Pavyzdis . Apskaičiuoti integralą
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy}
pagal išorinę pusę sferos
x
2
+
y
2
+
z
2
=
R
2
.
{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.}
Taikydami formulę Gauso - Ostragradksio, gauname:
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
=
∭
V
(
3
x
2
+
3
y
2
+
3
z
2
)
d
x
d
y
d
z
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
∫
0
R
ρ
4
d
ρ
=
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy=\iiint _{V}(3x^{2}+3y^{2}+3z^{2})dxdydz=3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta \int _{0}^{R}\rho ^{4}d\rho =}
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
ρ
5
5
|
0
R
=
3
⋅
R
5
5
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
=
3
R
5
5
∫
0
2
π
d
ϕ
sin
θ
|
−
π
2
π
2
=
3
R
5
5
∫
0
2
π
(
sin
π
2
−
sin
−
π
2
)
d
ϕ
=
{\displaystyle =3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta {\frac {\rho ^{5}}{5}}|_{0}^{R}=3\cdot {\frac {R^{5}}{5}}\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }d\phi \;\sin \theta |_{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(\sin {\frac {\pi }{2}}-\sin {\frac {-\pi }{2}})d\phi =}
=
3
R
5
5
∫
0
2
π
(
1
−
(
−
1
)
)
d
ϕ
=
6
R
5
5
ϕ
|
0
2
π
=
6
R
5
5
⋅
2
π
=
12
π
R
5
5
.
{\displaystyle ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(1-(-1))d\phi ={\frac {6R^{5}}{5}}\phi |_{0}^{2\pi }={\frac {6R^{5}}{5}}\cdot 2\pi ={\frac {12\pi R^{5}}{5}}.}
Patikrinsime apskaičiuodami
∬
S
x
3
d
y
d
z
,
∬
S
y
3
d
z
d
x
{\displaystyle \iint _{S}x^{3}\mathbf {d} y\mathbf {d} z,\;\iint _{S}y^{3}\mathbf {d} z\mathbf {d} x}
ir
∬
S
x
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}\mathbf {d} x\mathbf {d} y}
sumą.
x
2
=
R
2
−
y
2
−
z
2
,
{\displaystyle x^{2}=R^{2}-y^{2}-z^{2},}
x
=
R
2
−
y
2
−
z
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}-z^{2}}}.}
V
x
=
∬
S
x
3
d
y
d
z
=
∬
S
(
R
2
−
y
2
−
z
2
)
3
d
y
d
z
=
∬
S
(
R
2
−
ρ
2
)
3
ρ
d
ρ
d
ϕ
=
{\displaystyle V_{x}=\iint _{S}x^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-y^{2}-z^{2}}}\right)^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-\rho ^{2}}}\right)^{3}\rho \mathbf {d} \rho \mathbf {d} \phi =}
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
.
{\displaystyle =\int _{0}^{2\pi }\left(\int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi .}
Pasinaudodami internetiniu integratoriumi , gauname, kad
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
=
−
1
5
(
(
R
−
ρ
)
(
R
+
ρ
)
)
5
/
2
|
0
R
=
{\displaystyle \int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho =-{\frac {1}{5}}((R-\rho )(R+\rho ))^{5/2}|_{0}^{R}=}
=
−
1
5
(
(
R
−
R
)
(
R
+
R
)
)
5
/
2
−
(
−
1
5
(
(
R
−
0
)
(
R
+
0
)
)
5
/
2
)
=
{\displaystyle =-{\frac {1}{5}}((R-R)(R+R))^{5/2}-\left(-{\frac {1}{5}}((R-0)(R+0))^{5/2}\right)=}
=
0
+
1
5
(
(
R
−
0
)
(
R
+
0
)
)
5
/
2
=
1
5
(
R
2
)
5
/
2
=
R
5
5
;
{\displaystyle =0+{\frac {1}{5}}((R-0)(R+0))^{5/2}={\frac {1}{5}}(R^{2})^{5/2}={\frac {R^{5}}{5}};}
V
x
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
=
∫
0
2
π
R
5
5
d
ϕ
=
2
π
R
5
5
.
{\displaystyle V_{x}=\int _{0}^{2\pi }\left(\int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi =\int _{0}^{2\pi }{\frac {R^{5}}{5}}\mathbf {d} \phi ={\frac {2\pi R^{5}}{5}}.}
Kadangi reikia dviejų rutulio pusrutulių (teigiama ir neigiama Ox kryptimi), tai
V
X
=
2
V
x
=
2
⋅
2
π
R
5
5
=
4
π
R
5
5
.
{\displaystyle V_{X}=2V_{x}=2\cdot {\frac {2\pi R^{5}}{5}}={\frac {4\pi R^{5}}{5}}.}
Kadangi, pagal sąlyga bus
V
X
=
V
Y
=
V
Z
,
{\displaystyle V_{X}=V_{Y}=V_{Z},}
tai
V
=
3
V
X
=
3
⋅
4
π
R
5
5
=
12
π
R
5
5
.
{\displaystyle V=3V_{X}=3\cdot {\frac {4\pi R^{5}}{5}}={\frac {12\pi R^{5}}{5}}.}
Pavyzdis . Apskaičiuoti integralą
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy}
pagal išorinę pusę sferos
x
2
+
y
2
+
z
2
=
R
2
.
{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.}
Taikydami formulę Gauso - Ostragradksio, gauname:
∬
S
x
3
d
y
d
z
+
y
3
d
z
d
x
+
z
3
d
x
d
y
=
∭
V
(
3
x
2
+
3
y
2
+
3
z
2
)
d
x
d
y
d
z
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
∫
0
R
ρ
4
d
ρ
=
{\displaystyle \iint _{S}x^{3}dydz+y^{3}dzdx+z^{3}dxdy=\iiint _{V}(3x^{2}+3y^{2}+3z^{2})dxdydz=3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta \int _{0}^{R}\rho ^{4}d\rho =}
=
3
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
ρ
5
5
|
0
R
=
3
⋅
R
5
5
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
=
3
R
5
5
∫
0
2
π
d
ϕ
sin
θ
|
−
π
2
π
2
=
3
R
5
5
∫
0
2
π
(
sin
π
2
−
sin
−
π
2
)
d
ϕ
=
{\displaystyle =3\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta {\frac {\rho ^{5}}{5}}|_{0}^{R}=3\cdot {\frac {R^{5}}{5}}\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }d\phi \;\sin \theta |_{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(\sin {\frac {\pi }{2}}-\sin {\frac {-\pi }{2}})d\phi =}
=
3
R
5
5
∫
0
2
π
(
1
−
(
−
1
)
)
d
ϕ
=
6
R
5
5
ϕ
|
0
2
π
=
6
R
5
5
⋅
2
π
=
12
π
R
5
5
.
{\displaystyle ={\frac {3R^{5}}{5}}\int _{0}^{2\pi }(1-(-1))d\phi ={\frac {6R^{5}}{5}}\phi |_{0}^{2\pi }={\frac {6R^{5}}{5}}\cdot 2\pi ={\frac {12\pi R^{5}}{5}}.}
Patikrinsime apskaičiuodami
∬
S
x
3
d
y
d
z
,
∬
S
y
3
d
z
d
x
{\displaystyle \iint _{S}x^{3}\mathbf {d} y\mathbf {d} z,\;\iint _{S}y^{3}\mathbf {d} z\mathbf {d} x}
ir
∬
S
x
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}\mathbf {d} x\mathbf {d} y}
sumą.
x
2
=
R
2
−
y
2
−
z
2
,
{\displaystyle x^{2}=R^{2}-y^{2}-z^{2},}
x
=
R
2
−
y
2
−
z
2
;
{\displaystyle x={\sqrt {R^{2}-y^{2}-z^{2}}};}
∂
x
∂
y
=
∂
(
R
2
−
y
2
−
z
2
)
∂
y
=
−
2
y
2
R
2
−
y
2
−
z
2
=
−
y
R
2
−
y
2
−
z
2
;
{\displaystyle {\frac {\partial x}{\partial y}}={\frac {\partial ({\sqrt {R^{2}-y^{2}-z^{2}}})}{\partial y}}={\frac {-2y}{2{\sqrt {R^{2}-y^{2}-z^{2}}}}}={\frac {-y}{\sqrt {R^{2}-y^{2}-z^{2}}}};}
∂
x
∂
z
=
∂
(
R
2
−
y
2
−
z
2
)
∂
z
=
−
2
z
2
R
2
−
y
2
−
z
2
=
−
z
R
2
−
y
2
−
z
2
.
{\displaystyle {\frac {\partial x}{\partial z}}={\frac {\partial ({\sqrt {R^{2}-y^{2}-z^{2}}})}{\partial z}}={\frac {-2z}{2{\sqrt {R^{2}-y^{2}-z^{2}}}}}={\frac {-z}{\sqrt {R^{2}-y^{2}-z^{2}}}}.}
V
x
=
∬
S
x
3
1
+
(
∂
x
∂
y
)
2
+
(
∂
x
∂
z
)
2
d
y
d
z
=
{\displaystyle V_{x}=\iint _{S}x^{3}{\sqrt {1+\left({\frac {\partial x}{\partial y}}\right)^{2}+\left({\frac {\partial x}{\partial z}}\right)^{2}}}\mathbf {d} y\mathbf {d} z=}
=
∬
S
x
3
1
+
(
−
y
R
2
−
y
2
−
z
2
)
2
+
(
−
z
R
2
−
y
2
−
z
2
)
2
d
y
d
z
=
{\displaystyle =\iint _{S}x^{3}{\sqrt {1+\left({\frac {-y}{\sqrt {R^{2}-y^{2}-z^{2}}}}\right)^{2}+\left({\frac {-z}{\sqrt {R^{2}-y^{2}-z^{2}}}}\right)^{2}}}\mathbf {d} y\mathbf {d} z=}
=
∬
S
x
3
1
+
y
2
R
2
−
y
2
−
z
2
+
z
2
R
2
−
y
2
−
z
2
d
y
d
z
=
{\displaystyle =\iint _{S}x^{3}{\sqrt {1+{\frac {y^{2}}{R^{2}-y^{2}-z^{2}}}+{\frac {z^{2}}{R^{2}-y^{2}-z^{2}}}}}\mathbf {d} y\mathbf {d} z=}
=
∬
S
x
3
R
2
−
y
2
−
z
2
+
y
2
+
z
2
R
2
−
y
2
−
z
2
d
y
d
z
=
{\displaystyle =\iint _{S}x^{3}{\sqrt {\frac {R^{2}-y^{2}-z^{2}+y^{2}+z^{2}}{R^{2}-y^{2}-z^{2}}}}\mathbf {d} y\mathbf {d} z=}
=
∬
S
x
3
R
2
R
2
−
y
2
−
z
2
d
y
d
z
=
∬
S
R
2
−
y
2
−
z
2
R
2
R
2
−
y
2
−
z
2
d
y
d
z
=
∬
S
R
d
y
d
z
=
{\displaystyle =\iint _{S}x^{3}{\sqrt {\frac {R^{2}}{R^{2}-y^{2}-z^{2}}}}\mathbf {d} y\mathbf {d} z=\iint _{S}{\sqrt {R^{2}-y^{2}-z^{2}}}{\sqrt {\frac {R^{2}}{R^{2}-y^{2}-z^{2}}}}\mathbf {d} y\mathbf {d} z=\iint _{S}R\mathbf {d} y\mathbf {d} z=}
=
∬
S
R
ρ
d
ρ
d
ϕ
=
∫
0
2
π
(
∫
0
R
R
ρ
d
ρ
)
d
ϕ
=
{\displaystyle =\iint _{S}R\rho \mathbf {d} \rho \mathbf {d} \phi =\int _{0}^{2\pi }\left(\int _{0}^{R}R\rho \mathbf {d} \rho \right)\mathbf {d} \phi =}
=
∫
0
2
π
(
R
⋅
R
2
2
)
d
ϕ
=
R
3
2
∫
0
2
π
d
ϕ
=
R
3
2
⋅
2
π
=
R
3
π
.
{\displaystyle =\int _{0}^{2\pi }\left(R\cdot {\frac {R^{2}}{2}}\right)\mathbf {d} \phi ={\frac {R^{3}}{2}}\int _{0}^{2\pi }\mathbf {d} \phi ={\frac {R^{3}}{2}}\cdot 2\pi =R^{3}\pi .}
V
=
3
V
x
=
3
R
3
π
.
{\displaystyle V=3V_{x}=3R^{3}\pi .}
Gautas tūris nesutampa su Gauso formulės logika.
Pastaba. Rutulio paviršiaus ploto neįmanoma apskaičiuoti nei cilindinėse, nei sferinėse koordinatėse. Bandydami, gauname:
R
2
=
x
2
+
y
2
+
z
2
,
{\displaystyle R^{2}=x^{2}+y^{2}+z^{2},}
z
=
R
2
−
x
2
−
y
2
;
{\displaystyle z={\sqrt {R^{2}-x^{2}-y^{2}}};}
z
x
′
=
−
2
x
2
R
2
−
x
2
−
y
2
=
−
x
R
2
−
x
2
−
y
2
;
{\displaystyle z_{x}'={\frac {-2x}{2{\sqrt {R^{2}-x^{2}-y^{2}}}}}={\frac {-x}{\sqrt {R^{2}-x^{2}-y^{2}}}};}
z
y
′
=
−
2
y
2
R
2
−
x
2
−
y
2
=
−
y
R
2
−
x
2
−
y
2
;
{\displaystyle z_{y}'={\frac {-2y}{2{\sqrt {R^{2}-x^{2}-y^{2}}}}}={\frac {-y}{\sqrt {R^{2}-x^{2}-y^{2}}}};}
1
+
(
z
x
′
)
2
+
(
z
y
′
)
2
=
1
+
(
−
x
R
2
−
x
2
−
y
2
)
2
+
(
−
y
R
2
−
x
2
−
y
2
)
2
=
{\displaystyle {\sqrt {1+(z_{x}')^{2}+(z_{y}')^{2}}}={\sqrt {1+\left({\frac {-x}{\sqrt {R^{2}-x^{2}-y^{2}}}}\right)^{2}+\left({\frac {-y}{\sqrt {R^{2}-x^{2}-y^{2}}}}\right)^{2}}}=}
=
1
+
x
2
R
2
−
x
2
−
y
2
+
y
2
R
2
−
x
2
−
y
2
=
R
2
−
x
2
−
y
2
+
x
2
+
y
2
R
2
−
x
2
−
y
2
=
R
2
R
2
−
x
2
−
y
2
;
{\displaystyle ={\sqrt {1+{\frac {x^{2}}{R^{2}-x^{2}-y^{2}}}+{\frac {y^{2}}{R^{2}-x^{2}-y^{2}}}}}={\sqrt {\frac {R^{2}-x^{2}-y^{2}+x^{2}+y^{2}}{R^{2}-x^{2}-y^{2}}}}={\sqrt {\frac {R^{2}}{R^{2}-x^{2}-y^{2}}}};}
x
2
+
y
2
=
ρ
2
{\displaystyle x^{2}+y^{2}=\rho ^{2}}
cilindinėse ir polinėse koordinatėse;
Iš internetinio integratoriaus
∫
0
R
ρ
R
2
R
2
−
ρ
2
d
ρ
=
(
ρ
2
−
R
2
)
R
2
R
2
−
ρ
2
|
0
R
=
−
R
R
2
−
ρ
2
|
0
R
;
{\displaystyle \int _{0}^{R}\rho {\sqrt {\frac {R^{2}}{R^{2}-\rho ^{2}}}}\;d\rho =(\rho ^{2}-R^{2}){\sqrt {\frac {R^{2}}{R^{2}-\rho ^{2}}}}|_{0}^{R}=-R{\sqrt {R^{2}-\rho ^{2}}}|_{0}^{R};}
S
p
a
v
.
=
∬
s
1
+
(
z
x
′
)
2
+
(
z
y
′
)
2
d
x
d
y
=
∬
s
R
2
R
2
−
x
2
−
y
2
d
x
d
y
=
∫
0
2
π
d
ϕ
∫
0
R
ρ
R
2
R
2
−
ρ
2
d
ρ
=
{\displaystyle S_{pav.}=\iint _{s}{\sqrt {1+(z_{x}')^{2}+(z_{y}')^{2}}}\;dx\;dy=\iint _{s}{\sqrt {\frac {R^{2}}{R^{2}-x^{2}-y^{2}}}}\;dx\;dy=\int _{0}^{2\pi }d\phi \int _{0}^{R}\rho {\sqrt {\frac {R^{2}}{R^{2}-\rho ^{2}}}}\;d\rho =}
=
∫
0
2
π
−
R
R
2
−
ρ
2
|
0
R
d
ϕ
=
−
R
∫
0
2
π
(
R
2
−
R
2
−
R
2
−
0
2
)
d
ϕ
=
−
R
∫
0
2
π
(
0
−
R
2
)
d
ϕ
=
R
2
∫
0
2
π
d
ϕ
=
2
π
R
2
.
{\displaystyle =\int _{0}^{2\pi }-R{\sqrt {R^{2}-\rho ^{2}}}|_{0}^{R}d\phi =-R\int _{0}^{2\pi }({\sqrt {R^{2}-R^{2}}}-{\sqrt {R^{2}-0^{2}}})d\phi =-R\int _{0}^{2\pi }(0-{\sqrt {R^{2}}})d\phi =R^{2}\int _{0}^{2\pi }d\phi =2\pi R^{2}.}
Taigi, visas rutulio paviršiaus plotas susideda iš dviejų pusrutulių, todėl
S
v
i
s
a
s
=
2
⋅
S
p
a
v
.
=
2
⋅
2
π
R
2
=
4
π
R
2
.
{\displaystyle S_{visas}=2\cdot S_{pav.}=2\cdot 2\pi R^{2}=4\pi R^{2}.}
Kitaip patikrinsime apskaičiuodami
∬
S
x
3
d
y
d
z
,
∬
S
y
3
d
z
d
x
{\displaystyle \iint _{S}x^{3}\mathbf {d} y\mathbf {d} z,\;\iint _{S}y^{3}\mathbf {d} z\mathbf {d} x}
ir
∬
S
x
3
d
x
d
y
{\displaystyle \iint _{S}x^{3}\mathbf {d} x\mathbf {d} y}
sumą.
x
2
=
R
2
−
y
2
−
z
2
,
{\displaystyle x^{2}=R^{2}-y^{2}-z^{2},}
x
=
R
2
−
y
2
−
z
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}-z^{2}}}.}
V
x
=
∬
S
x
3
d
y
d
z
=
∬
S
(
R
2
−
y
2
−
z
2
)
3
d
y
d
z
=
∬
S
(
R
2
−
ρ
2
)
3
ρ
d
ρ
d
ϕ
=
{\displaystyle V_{x}=\iint _{S}x^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-y^{2}-z^{2}}}\right)^{3}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-\rho ^{2}}}\right)^{3}\rho \mathbf {d} \rho \mathbf {d} \phi =}
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
.
{\displaystyle =\int _{0}^{2\pi }\left(\int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi .}
Pasinaudodami internetiniu integratoriumi , gauname, kad
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
=
−
1
5
(
(
R
−
ρ
)
(
R
+
ρ
)
)
5
/
2
|
0
R
=
{\displaystyle \int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho =-{\frac {1}{5}}((R-\rho )(R+\rho ))^{5/2}|_{0}^{R}=}
=
−
1
5
(
(
R
−
R
)
(
R
+
R
)
)
5
/
2
−
(
−
1
5
(
(
R
−
0
)
(
R
+
0
)
)
5
/
2
)
=
{\displaystyle =-{\frac {1}{5}}((R-R)(R+R))^{5/2}-\left(-{\frac {1}{5}}((R-0)(R+0))^{5/2}\right)=}
=
0
+
1
5
(
(
R
−
0
)
(
R
+
0
)
)
5
/
2
=
1
5
(
R
2
)
5
/
2
=
R
5
5
;
{\displaystyle =0+{\frac {1}{5}}((R-0)(R+0))^{5/2}={\frac {1}{5}}(R^{2})^{5/2}={\frac {R^{5}}{5}};}
V
x
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
3
d
ρ
)
d
ϕ
=
∫
0
2
π
R
5
5
d
ϕ
=
2
π
R
5
5
.
{\displaystyle V_{x}=\int _{0}^{2\pi }\left(\int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{3}}}\mathbf {d} \rho \right)\mathbf {d} \phi =\int _{0}^{2\pi }{\frac {R^{5}}{5}}\mathbf {d} \phi ={\frac {2\pi R^{5}}{5}}.}
Kadangi reikia dviejų rutulio pusrutulių (teigiama ir neigiama Ox kryptimi), tai
V
X
=
2
V
x
=
2
⋅
2
π
R
5
5
=
4
π
R
5
5
.
{\displaystyle V_{X}=2V_{x}=2\cdot {\frac {2\pi R^{5}}{5}}={\frac {4\pi R^{5}}{5}}.}
Kadangi, pagal sąlyga bus
V
X
=
V
Y
=
V
Z
,
{\displaystyle V_{X}=V_{Y}=V_{Z},}
tai
V
=
3
V
X
=
3
⋅
4
π
R
5
5
=
12
π
R
5
5
.
{\displaystyle V=3V_{X}=3\cdot {\frac {4\pi R^{5}}{5}}={\frac {12\pi R^{5}}{5}}.}
Pavyzdis . Apskaičiuoti integralą
∬
S
x
2
d
y
d
z
+
0
d
z
d
x
+
0
d
x
d
y
{\displaystyle \iint _{S}x^{2}\;dydz+0\;dzdx+0\;dxdy}
pagal išorinę pusę sferos
x
2
+
y
2
+
z
2
=
R
2
.
{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.}
Taikydami formulę Gauso, gauname:
∬
S
x
2
d
y
d
z
=
∭
V
(
2
x
+
0
+
0
)
d
x
d
y
d
z
=
2
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
∫
0
R
ρ
3
d
ρ
=
{\displaystyle \iint _{S}x^{2}dydz=\iiint _{V}(2x+0+0)dxdydz=2\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta \int _{0}^{R}\rho ^{3}d\rho =}
=
2
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
ρ
4
4
|
0
R
=
2
⋅
R
4
4
∫
0
2
π
d
ϕ
∫
−
π
2
π
2
cos
θ
d
θ
=
R
4
2
∫
0
2
π
d
ϕ
sin
θ
|
−
π
2
π
2
=
R
4
2
∫
0
2
π
(
sin
π
2
−
sin
−
π
2
)
d
ϕ
=
{\displaystyle =2\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta {\frac {\rho ^{4}}{4}}|_{0}^{R}=2\cdot {\frac {R^{4}}{4}}\int _{0}^{2\pi }d\phi \int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\cos \theta d\theta ={\frac {R^{4}}{2}}\int _{0}^{2\pi }d\phi \;\sin \theta |_{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}={\frac {R^{4}}{2}}\int _{0}^{2\pi }(\sin {\frac {\pi }{2}}-\sin {\frac {-\pi }{2}})d\phi =}
=
R
4
2
∫
0
2
π
(
1
−
(
−
1
)
)
d
ϕ
=
R
4
ϕ
|
0
2
π
=
R
4
⋅
2
π
=
2
π
R
4
.
{\displaystyle ={\frac {R^{4}}{2}}\int _{0}^{2\pi }(1-(-1))d\phi =R^{4}\phi |_{0}^{2\pi }=R^{4}\cdot 2\pi =2\pi R^{4}.}
Dar viską reikia padalinti iš 3, kad gauti teisingai:
∬
S
x
2
d
y
d
z
+
0
d
z
d
x
+
0
d
x
d
y
=
2
3
π
R
4
.
{\displaystyle \iint _{S}x^{2}\;dydz+0\;dzdx+0\;dxdy={\frac {2}{3}}\pi R^{4}.}
Kitaip patikrinsime apskaičiuodami
∬
S
x
2
d
y
d
z
.
{\displaystyle \iint _{S}x^{2}\mathbf {d} y\mathbf {d} z.}
x
2
=
R
2
−
y
2
−
z
2
,
{\displaystyle x^{2}=R^{2}-y^{2}-z^{2},}
x
=
R
2
−
y
2
−
z
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}-z^{2}}}.}
V
x
=
∬
S
x
2
d
y
d
z
=
∬
S
(
R
2
−
y
2
−
z
2
)
2
d
y
d
z
=
∬
S
(
R
2
−
ρ
2
)
2
ρ
d
ρ
d
ϕ
=
{\displaystyle V_{x}=\iint _{S}x^{2}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-y^{2}-z^{2}}}\right)^{2}\mathbf {d} y\mathbf {d} z=\iint _{S}\left({\sqrt {R^{2}-\rho ^{2}}}\right)^{2}\rho \mathbf {d} \rho \mathbf {d} \phi =}
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
d
ρ
)
d
ϕ
.
{\displaystyle =\int _{0}^{2\pi }\left(\int _{0}^{R}\rho (R^{2}-\rho ^{2})\mathbf {d} \rho \right)\mathbf {d} \phi .}
Pasinaudodami internetiniu integratoriumi , gauname, kad
∫
0
R
ρ
(
R
2
−
ρ
2
)
d
ρ
=
∫
0
R
(
ρ
R
2
−
ρ
3
)
d
ρ
=
(
ρ
2
R
2
2
−
ρ
4
4
)
|
0
R
=
{\displaystyle \int _{0}^{R}\rho (R^{2}-\rho ^{2})\mathbf {d} \rho =\int _{0}^{R}(\rho R^{2}-\rho ^{3})\mathbf {d} \rho =({\frac {\rho ^{2}R^{2}}{2}}-{\frac {\rho ^{4}}{4}})|_{0}^{R}=}
=
R
2
⋅
R
2
2
−
R
4
4
=
R
4
4
.
{\displaystyle ={\frac {R^{2}\cdot R^{2}}{2}}-{\frac {R^{4}}{4}}={\frac {R^{4}}{4}}.}
V
x
=
∫
0
2
π
(
∫
0
R
ρ
(
R
2
−
ρ
2
)
2
d
ρ
)
d
ϕ
=
∫
0
2
π
R
4
4
d
ϕ
=
2
π
R
4
4
=
π
R
4
2
.
{\displaystyle V_{x}=\int _{0}^{2\pi }\left(\int _{0}^{R}\rho {\sqrt {(R^{2}-\rho ^{2})^{2}}}\mathbf {d} \rho \right)\mathbf {d} \phi =\int _{0}^{2\pi }{\frac {R^{4}}{4}}\mathbf {d} \phi ={\frac {2\pi R^{4}}{4}}={\frac {\pi R^{4}}{2}}.}
Kadangi reikia dviejų rutulio pusrutulių (teigiama ir neigiama Ox kryptimi), tai
V
X
=
2
V
x
=
2
⋅
π
R
4
2
=
π
R
4
.
{\displaystyle V_{X}=2V_{x}=2\cdot {\frac {\pi R^{4}}{2}}=\pi R^{4}.}
Atsakymai
2
3
π
R
4
{\displaystyle {\frac {2}{3}}\pi R^{4}}
ir
π
R
4
{\displaystyle \pi R^{4}}
nesutampa, todėl tokie skaičiavimai neturi prasmės (Gauso formulė gali būti arba neteisinga arba turi labai mažai pritaikymo pavyzdžių).