Suskirstome pusė rutulio tūrio į 10 ploksčių dalių, kai spindulys r=1. Kiekvienos plokštės aukštis h=r/10=1/10. Iš formulės
x
=
cos
(
A
)
=
1
−
sin
2
(
A
)
=
1
−
y
2
.
{\displaystyle x=\cos(A)={\sqrt {1-\sin ^{2}(A)}}={\sqrt {1-y^{2}}}.}
Ir ploksčių spinduliai pvz,
r
1
=
r
{\displaystyle r_{1}=r}
,
r
2
=
1
−
y
2
2
=
1
−
0.1
2
{\displaystyle r_{2}={\sqrt {1-y_{2}^{2}}}={\sqrt {1-0.1^{2}}}}
,
r
3
=
1
−
y
3
2
=
1
−
0.2
2
{\displaystyle r_{3}={\sqrt {1-y_{3}^{2}}}={\sqrt {1-0.2^{2}}}}
,
r
4
=
1
−
y
4
2
=
1
−
0.3
2
{\displaystyle r_{4}={\sqrt {1-y_{4}^{2}}}={\sqrt {1-0.3^{2}}}}
ir taip toliau.
V
1
=
h
π
r
2
=
π
r
2
/
10
=
π
/
10
=
0.1
π
{\displaystyle V_{1}=h\pi r^{2}=\pi r^{2}/10=\pi /10=0.1\pi }
,
V
2
=
π
10
⋅
(
1
−
0.1
2
)
2
=
π
(
1
−
0.01
)
10
=
π
0.99
/
10
=
0.099
π
{\displaystyle V_{2}={\pi \over 10}\cdot ({\sqrt {1-0.1^{2}}})^{2}={\pi (1-0.01) \over 10}=\pi 0.99/10=0.099\pi }
,
V
3
=
h
π
(
1
−
0.2
2
)
=
π
(
1
−
0.04
)
/
10
=
0.96
π
/
10
=
0.096
π
{\displaystyle V_{3}=h\pi (1-0.2^{2})=\pi (1-0.04)/10=0.96\pi /10=0.096\pi }
,
V
4
=
h
π
(
1
−
0.3
2
)
=
π
(
1
−
0.09
)
/
10
=
0.91
π
/
10
=
0.091
π
{\displaystyle V_{4}=h\pi (1-0.3^{2})=\pi (1-0.09)/10=0.91\pi /10=0.091\pi }
,
V
5
=
h
π
(
1
−
0.4
2
)
=
π
(
1
−
0.16
)
/
10
=
0.84
π
/
10
=
0.084
π
{\displaystyle V_{5}=h\pi (1-0.4^{2})=\pi (1-0.16)/10=0.84\pi /10=0.084\pi }
,
V
6
=
h
π
(
1
−
0.5
2
)
=
π
(
1
−
0.25
)
/
10
=
0.75
π
/
10
=
0.075
π
{\displaystyle V_{6}=h\pi (1-0.5^{2})=\pi (1-0.25)/10=0.75\pi /10=0.075\pi }
,
V
7
=
h
π
(
1
−
0.6
2
)
=
π
(
1
−
0.36
)
/
10
=
0.64
π
/
10
=
0.064
π
{\displaystyle V_{7}=h\pi (1-0.6^{2})=\pi (1-0.36)/10=0.64\pi /10=0.064\pi }
,
V
8
=
h
π
(
1
−
0.7
2
)
=
π
(
1
−
0.49
)
/
10
=
0.51
π
/
10
=
0.051
π
{\displaystyle V_{8}=h\pi (1-0.7^{2})=\pi (1-0.49)/10=0.51\pi /10=0.051\pi }
,
V
9
=
h
π
(
1
−
0.8
2
)
=
π
(
1
−
0.64
)
/
10
=
0.36
π
/
10
=
0.036
π
{\displaystyle V_{9}=h\pi (1-0.8^{2})=\pi (1-0.64)/10=0.36\pi /10=0.036\pi }
,
V
10
=
h
π
(
1
−
0.9
2
)
=
π
(
1
−
0.81
)
/
10
=
0.19
π
/
10
=
0.019
π
{\displaystyle V_{10}=h\pi (1-0.9^{2})=\pi (1-0.81)/10=0.19\pi /10=0.019\pi }
.
O visas rutulio tūris apytiksliai lygus:
V
=
2
(
V
1
+
V
2
+
V
3
+
V
4
+
V
5
+
V
6
+
V
7
+
V
8
+
V
9
+
V
10
)
=
2
π
(
0.1
+
0.099
+
0.096
+
0.091
+
0.084
+
0.075
+
0.064
+
0.051
+
0.036
+
0.019
)
=
2
π
0.715
=
1.43
π
=
4.49
{\displaystyle V=2(V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}+V_{7}+V_{8}+V_{9}+V_{10})=2\pi (0.1+0.099+0.096+0.091+0.084+0.075+0.064+0.051+0.036+0.019)=2\pi 0.715=1.43\pi =4.49}
.
Gana arti rezultatui:
V
=
4
3
π
r
3
=
4
π
3
⋅
1
3
=
4.188790205.
{\displaystyle V={4 \over 3}\pi r^{3}={4\pi \over 3}\cdot 1^{3}=4.188790205.}
Padalinus į daugiau dalių atsakymas butų tikslesnis.
Suskirstome pusė rutulio į 10 žiedų, kai spindulys r=1. Kiekvieno žiedo aukštis h=r/10=1/10. Iš formulės
x
=
cos
(
A
)
=
1
−
sin
2
(
A
)
=
1
−
y
2
.
{\displaystyle x=\cos(A)={\sqrt {1-\sin ^{2}(A)}}={\sqrt {1-y^{2}}}.}
Ir žiedų spinduliai pvz,
r
1
=
r
{\displaystyle r_{1}=r}
,
r
2
=
1
−
y
2
2
=
1
−
0.1
2
{\displaystyle r_{2}={\sqrt {1-y_{2}^{2}}}={\sqrt {1-0.1^{2}}}}
,
r
3
=
1
−
y
3
2
=
1
−
0.2
2
{\displaystyle r_{3}={\sqrt {1-y_{3}^{2}}}={\sqrt {1-0.2^{2}}}}
,
r
4
=
1
−
y
4
2
=
1
−
0.3
2
{\displaystyle r_{4}={\sqrt {1-y_{4}^{2}}}={\sqrt {1-0.3^{2}}}}
, ...
r
10
=
1
−
y
10
2
=
1
−
0.1
2
{\displaystyle r_{10}={\sqrt {1-y_{10}^{2}}}={\sqrt {1-0.1^{2}}}}
.
S
1
=
h
π
2
r
=
2
π
r
/
10
=
2
π
/
10
=
0.2
π
{\displaystyle S_{1}=h\pi 2r=2\pi r/10=2\pi /10=0.2\pi }
,
S
2
=
2
π
10
⋅
1
−
0.1
2
=
π
5
⋅
0.99
=
π
0.9949874
/
5
=
0.198997
π
{\displaystyle S_{2}={2\pi \over 10}\cdot {\sqrt {1-0.1^{2}}}={\pi \over 5}\cdot {\sqrt {0.99}}=\pi 0.9949874/5=0.198997\pi }
,
S
3
=
h
2
π
(
1
−
0.2
2
)
0.5
=
2
π
(
1
−
0.04
)
0.5
/
10
=
0.96
0.5
π
/
5
=
0.195959
π
{\displaystyle S_{3}=h2\pi (1-0.2^{2})^{0.5}=2\pi (1-0.04)^{0.5}/10=0.96^{0.5}\pi /5=0.195959\pi }
,
S
4
=
h
2
π
(
1
−
0.3
2
)
0.5
=
2
π
(
1
−
0.09
)
0.5
/
10
=
0.91
0.5
π
/
5
=
0.190788
π
{\displaystyle S_{4}=h2\pi (1-0.3^{2})^{0.5}=2\pi (1-0.09)^{0.5}/10=0.91^{0.5}\pi /5=0.190788\pi }
,
S
5
=
h
2
π
(
1
−
0.4
2
)
0.5
=
2
π
(
1
−
0.16
)
0.5
/
10
=
0.84
0.5
π
/
5
=
0.183303
π
{\displaystyle S_{5}=h2\pi (1-0.4^{2})^{0.5}=2\pi (1-0.16)^{0.5}/10=0.84^{0.5}\pi /5=0.183303\pi }
,
S
6
=
h
2
π
(
1
−
0.5
2
)
0.5
=
2
π
(
1
−
0.25
)
0.5
/
10
=
0.75
0.5
π
/
5
=
0.173205
π
{\displaystyle S_{6}=h2\pi (1-0.5^{2})^{0.5}=2\pi (1-0.25)^{0.5}/10=0.75^{0.5}\pi /5=0.173205\pi }
,
S
7
=
h
2
π
(
1
−
0.6
2
)
0.5
=
2
π
(
1
−
0.36
)
0.5
/
10
=
0.64
0.5
π
/
5
=
0.16
π
{\displaystyle S_{7}=h2\pi (1-0.6^{2})^{0.5}=2\pi (1-0.36)^{0.5}/10=0.64^{0.5}\pi /5=0.16\pi }
,
S
8
=
h
2
π
(
1
−
0.7
2
)
0.5
=
2
π
(
1
−
0.49
)
0.5
/
10
=
0.51
0.5
π
/
5
=
0.142828
π
{\displaystyle S_{8}=h2\pi (1-0.7^{2})^{0.5}=2\pi (1-0.49)^{0.5}/10=0.51^{0.5}\pi /5=0.142828\pi }
,
S
9
=
h
2
π
(
1
−
0.8
2
)
0.5
=
2
π
(
1
−
0.64
)
0.5
/
10
=
0.36
0.5
π
/
5
=
0.12
π
{\displaystyle S_{9}=h2\pi (1-0.8^{2})^{0.5}=2\pi (1-0.64)^{0.5}/10=0.36^{0.5}\pi /5=0.12\pi }
,
S
10
=
2
h
π
(
1
−
0.9
2
)
0.5
=
2
π
(
1
−
0.81
)
0.5
/
10
=
0.19
0.5
π
/
5
=
0.087178
π
{\displaystyle S_{10}=2h\pi (1-0.9^{2})^{0.5}=2\pi (1-0.81)^{0.5}/10=0.19^{0.5}\pi /5=0.087178\pi }
.
O visas rutulio paviršiaus plotas apytiksliai lygus (sudėjus du pusrutulius):
S
=
2
(
S
1
+
S
2
+
S
3
+
S
4
+
S
5
+
S
6
+
S
7
+
S
8
+
S
9
+
S
10
)
=
2
π
(
0.2
+
0.198997
+
0.195959
+
0.190788
+
0.183303
+
0.173205
+
0.16
+
0.142828
+
0.12
+
0.087178
)
=
2
π
1.652258
=
π
3.304516
=
10.38144319
{\displaystyle S=2(S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}+S_{7}+S_{8}+S_{9}+S_{10})=2\pi (0.2+0.198997+0.195959+0.190788+0.183303+0.173205+0.16+0.142828+0.12+0.087178)=2\pi 1.652258=\pi 3.304516=10.38144319}
.
Gana arti kalkuliatoriaus rezultato:
S
=
4
π
r
2
=
4
π
⋅
1
2
=
12
,
56637061.
{\displaystyle S=4\pi r^{2}=4\pi \cdot 1^{2}=12,56637061.}
Padalinus į daugiau dalių atsakymas butų tikslesnis, tačiau atsakymas turėjo gautis didesnis, o ne mažesnis. Matyt oficialiai pripažinta formulė neteisinga, nes tai įrodo ir į aštuonis trikampius padalintas rutulys (antras įrodymas), kai kiekvieno trikampio pagrindas
a
=
π
/
2
{\displaystyle a=\pi /2}
, o trikampio aukštinė taip pat lygi
h
=
π
/
2
{\displaystyle h=\pi /2}
. Tuomet visas rutulio paviršiaus plotas lygus:
S
=
8
⋅
a
h
2
=
8
⋅
π
2
⋅
π
2
2
=
4
⋅
π
2
4
=
π
2
=
9.8696.
{\displaystyle S=8\cdot {ah \over 2}=8\cdot {{\pi \over 2}\cdot {\pi \over 2} \over 2}=4\cdot {\pi ^{2} \over 4}=\pi ^{2}=9.8696.}
Bet net šis atsakymas 9,8696 yra truputi didesnis už tikrą sferos paviršiaus plotą, nes bet kurio vieno iš aštuoniu trikampių pagrindas yra teisingas
a
=
0.5
π
{\displaystyle a=0.5\pi }
, nes toks yra apskritimo lanko ilgis ketvirtosios viršutinės dalies. Aukštinė
h
=
0.5
π
{\displaystyle h=0.5\pi }
taip pat teisinga, nes toks yra apskritimo lankas bet kur. O štai trikampio kraštinės dėl įlenkimų (pagrindo ir aukštinės) yra trumpesni nei turėtų būti tokio trikampio su aukštine
h
=
0.5
π
{\displaystyle h=0.5\pi }
ir pagrindu
a
=
0.5
π
{\displaystyle a=0.5\pi }
. Ir dėl to, kad kraštinės kiekvieno iš 8 trikampių yra trumpesnės ir lygios
π
{\displaystyle \pi }
/2, seka, kad tikrasis rutulio paviršiaus plotas yra mažesnis už 9,8696 ir intuityviai svyruotų tarp 9,8 ir 7,5.
Bet sferos paviršiaus plotas negali būti mažesnis už . Nes jei x=r=1 ir y=r=1, tai ižambinė lygi pagal pitagoro teorema
a
=
(
1
2
+
1
2
)
0.5
=
2
0.5
=
1.41421
{\displaystyle a=(1^{2}+1^{2})^{0.5}=2^{0.5}=1.41421}
, o padalinus šią reikšmę per pusę
2
0.5
/
2
=
0.7071
{\displaystyle 2^{0.5}/2=0.7071}
galime apskaičiuoti aukšinę
b
=
(
c
2
−
a
2
)
0.5
=
(
1
2
−
0.7071
)
0.5
=
0.541196
{\displaystyle b=(c^{2}-a^{2})^{0.5}=(1^{2}-0.7071)^{0.5}=0.541196}
. Toliau jau galime rasti šio vieno iš aštuonių trikampio aukštinę
h
=
(
r
2
+
b
2
)
0.5
=
(
1
2
+
0.541196
2
)
0.5
=
1.1370546
{\displaystyle h=(r^{2}+b^{2})^{0.5}=(1^{2}+0.541196^{2})^{0.5}=1.1370546}
. Dabar galime rasti visos sferos minimalų paviršiaus plota koks dar galėtų būti:
S
=
8
a
h
/
2
=
8
⋅
1.1370546
⋅
2
2
=
4
⋅
1.608038
=
6.432152.
{\displaystyle S=8ah/2=8\cdot {1.1370546\cdot {\sqrt {2}} \over 2}=4\cdot 1.608038=6.432152.}
Taigi Tikrasis rutulio paviršiaus plotas yra ne daugiau už 10 ir ne mažiau už 6,5.
Bet čia iš tikrųjų suveikė ižambinės efektas, nes kiekviena dalelė-linija yra pasvyra, o ne stati Ox ašiai, todėl padalinus į daugiau dalių atsakymas gausis mažiau nei 10.381443. Vietoje laiptelių turėtų būti ižambinės ir dėl to [padalinus į daugiau dalių] atsakymas visada galėtų būti net mažesnis už 10, kai r=1. Paviršiaus ploto įrodymas http://mathschallenge.net/index.php?section=faq&ref=geometry/surface_sphere (Padalinus rutulį i daug mažų piramidžių, kai visų piramidžių pagrindai sudaro rutulio paviršiaus plotą, o visų piramidžių aukštinės yra rululio spindulys, todėl rutulio tūrį reikia padalinti iš rutulio spindulio ir 1/3, kad gauti rutulio paviršiaus plotą).
Iš to išeina išvada, kad negalima greitai apskaičiuoti paraboloido paviršiaus ploto arba iš vis neįmanoma niekaip apskaičiuoti paraboloido paviršiaus ploto (išskyrus, žinoma, per integralus), nes reikia paviršių dalinti ne tik į žiedus, bet į kažkokias trapecijas ar velnias žino ką.
Visgi greičiausiai įmanoma apskaičiuoti paraboloido paviršiaus plotą. Reikia, paraboloidą projektuoti į yOz arba xOz plokštumą. Tada parboloido linija bus kaip parbolė
z
=
y
2
{\displaystyle z=y^{2}}
ant yOz plokštumos. Tuomet suskirstyti Oy ašį į daug dalių (pvz. 20) ir paskui surasti kiekvienam x taškui atitinkanti y taska, o paskui surasti atstumus tarp tų taškų visų sudėtų ant parabolės
z
=
y
2
{\displaystyle z=y^{2}}
. Kai atkarpų ilgiai surasti, tai kiekviena atkarpa bus aukštis h vietoje aukščio, kuris turėtų būti Oz ašį padalinus į daug dalių. Tuomet bus galima apskaičiuoti paraboloido paviršiaus plotą pagal formulę
2
π
(
h
1
+
h
2
+
h
3
+
.
.
.
+
h
n
)
.
{\displaystyle 2\pi (h_{1}+h_{2}+h_{3}+...+h_{n}).}
Divide piramide into 10 parts and each part of height c=1 and so h=1*10=10, a=10,
B
=
a
2
=
100
{\displaystyle B=a^{2}=100}
. So aproximate piramide value is:
V
=
c
(
a
1
2
+
a
2
2
+
a
3
2
+
a
4
2
+
a
5
2
+
a
6
2
+
a
7
2
+
a
8
2
+
a
10
2
)
=
1
(
1
2
+
2
2
+
3
2
+
4
2
+
5
2
+
6
2
+
7
2
+
8
2
+
9
2
+
10
2
)
=
385.
{\displaystyle V=c(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}+a_{10}^{2})=1(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2})=385.}
And this pretty close to
h
a
2
3
=
10
⋅
10
2
3
=
333.3333
{\displaystyle {ha^{2} \over 3}={10\cdot 10^{2} \over 3}=333.3333}
.
"pretty close" is not a proof . —Tamfang (talk ) 05:45, 31 December 2009 (UTC)
Divide into more peaces and you will get infinitly close to 333.(3). Like for example:
V
=
c
(
a
1
2
+
a
2
2
+
a
3
2
+
a
4
2
+
a
5
2
+
a
6
2
+
a
7
2
+
a
8
2
+
a
10
2
+
.
.
.
+
a
99
2
+
a
100
2
)
=
{\displaystyle V=c(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}+a_{10}^{2}+...+a_{99}^{2}+a_{100}^{2})=}
=
0.1
(
0.1
2
+
0.2
2
+
0.3
2
+
0.4
2
+
0.5
2
+
0.6
2
+
0.7
2
+
0.8
2
+
0.9
2
+
0.1
2
+
1.1
2
+
1.2
2
+
1.3
2
+
1.4
2
+
.
.
.
+
9.8
2
+
9.9
2
+
10
2
)
=
{\displaystyle =0.1(0.1^{2}+0.2^{2}+0.3^{2}+0.4^{2}+0.5^{2}+0.6^{2}+0.7^{2}+0.8^{2}+0.9^{2}+0.1^{2}+1.1^{2}+1.2^{2}+1.3^{2}+1.4^{2}+...+9.8^{2}+9.9^{2}+10^{2})=}
=
333.520
{\displaystyle =333.520}
.
And if
h
=
100
{\displaystyle h=100}
and
a
=
10
{\displaystyle a=10}
, then it is also correct:
V
=
c
(
a
1
2
+
a
2
2
+
a
3
2
+
a
4
2
+
a
5
2
+
a
6
2
+
a
7
2
+
a
8
2
+
a
10
2
+
.
.
.
+
a
99
2
+
a
100
2
)
=
{\displaystyle V=c(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}+a_{10}^{2}+...+a_{99}^{2}+a_{100}^{2})=}
=
1
(
0.1
2
+
0.2
2
+
0.3
2
+
0.4
2
+
0.5
2
+
0.6
2
+
0.7
2
+
0.8
2
+
0.9
2
+
0.1
2
+
1.1
2
+
1.2
2
+
1.3
2
+
1.4
2
+
.
.
.
+
9.8
2
+
9.9
2
+
10
2
)
=
{\displaystyle =1(0.1^{2}+0.2^{2}+0.3^{2}+0.4^{2}+0.5^{2}+0.6^{2}+0.7^{2}+0.8^{2}+0.9^{2}+0.1^{2}+1.1^{2}+1.2^{2}+1.3^{2}+1.4^{2}+...+9.8^{2}+9.9^{2}+10^{2})=}
=
3335.20
{\displaystyle =3335.20}
.
So like
V
=
B
h
3
=
a
2
h
3
=
10
2
⋅
100
3
=
10000
3
=
3333.
(
3
)
{\displaystyle V={Bh \over 3}={a^{2}h \over 3}={10^{2}\cdot 100 \over 3}={10000 \over 3}=3333.(3)}
.
It's like integral sums of peaces under parabola
a
=
x
{\displaystyle a=x}
,
∫
0
10
x
2
d
x
=
x
3
3
|
0
10
=
10
3
3
−
0
3
3
=
333.3333
{\displaystyle \int _{0}^{10}x^{2}dx={x^{3} \over 3}|_{0}^{10}={10^{3} \over 3}-{0^{3} \over 3}=333.3333}
- it's answer when
a
=
h
{\displaystyle a=h}
. All peaces under parabola have same width
c
=
1
{\displaystyle c=1}
, but height
x
2
{\displaystyle x^{2}}
of each peace like
1
2
{\displaystyle 1^{2}}
, then
2
2
{\displaystyle 2^{2}}
, then
3
2
{\displaystyle 3^{2}}
,...,
9
2
{\displaystyle 9^{2}}
,
10
2
{\displaystyle 10^{2}}
. So this
y
=
x
2
{\displaystyle y=x^{2}}
at any point on x axis, can be interpretated as
B
=
a
2
{\displaystyle B=a^{2}}
and this each peace of pyramid height is
c
=
1
{\displaystyle c=1}
and each peace value
V
1
=
c
a
1
2
{\displaystyle V_{1}=ca_{1}^{2}}
,
V
2
=
c
a
2
2
{\displaystyle V_{2}=ca_{2}^{2}}
,
V
3
=
c
a
3
2
{\displaystyle V_{3}=ca_{3}^{2}}
,...,
V
9
=
c
a
9
2
{\displaystyle V_{9}=ca_{9}^{2}}
,
V
10
=
c
a
10
2
{\displaystyle V_{10}=ca_{10}^{2}}
. And
V
=
V
1
+
V
2
+
V
3
+
.
.
.
+
V
9
+
V
10
=
385
{\displaystyle V=V_{1}+V_{2}+V_{3}+...+V_{9}+V_{10}=385}
.
And if
a
=
100
{\displaystyle a=100}
,
h
=
100
{\displaystyle h=100}
,
c
=
1
{\displaystyle c=1}
, then of course it's also correct:
V
=
c
(
a
1
2
+
a
2
2
+
a
3
2
+
a
4
2
+
a
5
2
+
a
6
2
+
a
7
2
+
a
8
2
+
a
10
2
+
.
.
.
+
a
99
2
+
a
100
2
)
=
{\displaystyle V=c(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}+a_{10}^{2}+...+a_{99}^{2}+a_{100}^{2})=}
=
1
(
1
2
+
2
2
+
3
2
+
4
2
+
5
2
+
6
2
+
7
2
+
8
2
+
9
2
+
10
2
+
11
2
+
12
2
+
13
2
+
14
2
+
.
.
.
+
98
2
+
99
2
+
100
2
)
=
333520
{\displaystyle =1(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}+11^{2}+12^{2}+13^{2}+14^{2}+...+98^{2}+99^{2}+100^{2})=333520}
. Very close to
V
=
h
a
2
3
=
100
⋅
100
2
3
=
333333.
(
3
)
{\displaystyle V={ha^{2} \over 3}={100\cdot 100^{2} \over 3}=333333.(3)}
.
And if
a
=
100
,
{\displaystyle a=100,}
h
=
10
{\displaystyle h=10}
,
c
=
0.1
{\displaystyle c=0.1}
, dividing pyramid into 100 parts (c=h/100=0.1) and it is correct:
V
=
c
(
a
1
2
+
a
2
2
+
a
3
2
+
a
4
2
+
a
5
2
+
a
6
2
+
a
7
2
+
a
8
2
+
a
10
2
+
.
.
.
+
a
99
2
+
a
100
2
)
=
{\displaystyle V=c(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}+a_{10}^{2}+...+a_{99}^{2}+a_{100}^{2})=}
=
0.1
(
1
2
+
2
2
+
3
2
+
4
2
+
5
2
+
6
2
+
7
2
+
8
2
+
9
2
+
10
2
+
11
2
+
12
2
+
13
2
+
14
2
+
.
.
.
+
98
2
+
99
2
+
100
2
)
=
33352
{\displaystyle =0.1(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}+11^{2}+12^{2}+13^{2}+14^{2}+...+98^{2}+99^{2}+100^{2})=33352}
. Very close to
V
=
h
a
2
3
=
10
⋅
100
2
3
=
33333.
(
3
)
{\displaystyle V={ha^{2} \over 3}={10\cdot 100^{2} \over 3}=33333.(3)}
.
Patikrinsime parbolės
z
=
x
2
{\displaystyle z=x^{2}}
lanko ilgį padalindami parabolės šaką į 10 atkarpų-tiesių, kai 0<x<4. Kiekvienos atkarpos projekcijos į Ox ašį ilgis yra 0,4. Todėl reikiau gauti visas x reikšmes:
x
0
=
0
;
{\displaystyle x_{0}=0;}
x
1
=
0.4
;
{\displaystyle x_{1}=0.4;}
x
2
=
2
⋅
0.4
=
0.8
;
{\displaystyle x_{2}=2\cdot 0.4=0.8;}
x
3
=
3
⋅
0.4
=
1.2
;
{\displaystyle x_{3}=3\cdot 0.4=1.2;}
x
4
=
4
⋅
0.4
=
1.6
;
{\displaystyle x_{4}=4\cdot 0.4=1.6;}
x
5
=
5
⋅
0.4
=
2
;
{\displaystyle x_{5}=5\cdot 0.4=2;}
x
6
=
6
⋅
0.4
=
2.4
;
{\displaystyle x_{6}=6\cdot 0.4=2.4;}
x
7
=
7
⋅
0.4
=
2.8
;
{\displaystyle x_{7}=7\cdot 0.4=2.8;}
x
8
=
8
⋅
0.4
=
3.2
;
{\displaystyle x_{8}=8\cdot 0.4=3.2;}
x
9
=
9
⋅
0.4
=
3.6
;
{\displaystyle x_{9}=9\cdot 0.4=3.6;}
x
10
=
10
⋅
0.4
=
4.
{\displaystyle x_{10}=10\cdot 0.4=4.}
Dabar toliau reikia surasti visas z reikšmes, įstačius x reikšmes:
z
0
=
x
0
2
=
0
2
=
0
;
{\displaystyle z_{0}=x_{0}^{2}=0^{2}=0;}
z
1
=
x
1
2
=
0.4
2
=
0.16
;
{\displaystyle z_{1}=x_{1}^{2}=0.4^{2}=0.16;}
z
2
=
x
2
2
=
0.8
2
=
0.64
;
{\displaystyle z_{2}=x_{2}^{2}=0.8^{2}=0.64;}
z
3
=
x
3
2
=
1.2
2
=
1.44
;
{\displaystyle z_{3}=x_{3}^{2}=1.2^{2}=1.44;}
z
4
=
x
4
2
=
1.6
2
=
2.56
;
{\displaystyle z_{4}=x_{4}^{2}=1.6^{2}=2.56;}
z
5
=
x
5
2
=
2
2
=
4
;
{\displaystyle z_{5}=x_{5}^{2}=2^{2}=4;}
z
6
=
x
6
2
=
2.4
2
=
5.76
;
{\displaystyle z_{6}=x_{6}^{2}=2.4^{2}=5.76;}
z
7
=
x
7
2
=
2.8
2
=
7.84
;
{\displaystyle z_{7}=x_{7}^{2}=2.8^{2}=7.84;}
z
8
=
x
8
2
=
3.2
2
=
10.24
;
{\displaystyle z_{8}=x_{8}^{2}=3.2^{2}=10.24;}
z
9
=
x
9
2
=
3.6
2
=
12.96
;
{\displaystyle z_{9}=x_{9}^{2}=3.6^{2}=12.96;}
z
10
=
x
10
2
=
4
2
=
16.
{\displaystyle z_{10}=x_{10}^{2}=4^{2}=16.}
Dabar belieka surasti atkarpu ilgius kaip nuo taško (0; 0; 0) iki taško (0,4; 0; 0,16); nuo taško (0,4; 0; 0,16) iki (0,8; 0; 0,64) ir taip toliau:
a
1
=
(
x
1
−
x
0
)
2
+
(
z
1
−
z
2
)
2
=
(
0.4
−
0
)
2
+
(
0.16
−
0
)
2
=
0.16
+
0.0256
=
0.1856
=
0.430813184
;
{\displaystyle a_{1}={\sqrt {(x_{1}-x_{0})^{2}+(z_{1}-z_{2})^{2}}}={\sqrt {(0.4-0)^{2}+(0.16-0)^{2}}}={\sqrt {0.16+0.0256}}={\sqrt {0.1856}}=0.430813184;}
a
2
=
(
x
2
−
x
1
)
2
+
(
z
2
−
z
1
)
2
=
(
0.8
−
0.4
)
2
+
(
0.64
−
0.16
)
2
=
0.16
+
0.2304
=
0.3904
=
0.624819974
;
{\displaystyle a_{2}={\sqrt {(x_{2}-x_{1})^{2}+(z_{2}-z_{1})^{2}}}={\sqrt {(0.8-0.4)^{2}+(0.64-0.16)^{2}}}={\sqrt {0.16+0.2304}}={\sqrt {0.3904}}=0.624819974;}
a
3
=
(
x
3
−
x
2
)
2
+
(
z
3
−
z
2
)
2
=
(
1.2
−
0.8
)
2
+
(
1.44
−
0.64
)
2
=
0.16
+
0.64
=
0.8
=
0.894427191
;
{\displaystyle a_{3}={\sqrt {(x_{3}-x_{2})^{2}+(z_{3}-z_{2})^{2}}}={\sqrt {(1.2-0.8)^{2}+(1.44-0.64)^{2}}}={\sqrt {0.16+0.64}}={\sqrt {0.8}}=0.894427191;}
a
4
=
(
x
4
−
x
3
)
2
+
(
z
4
−
z
3
)
2
=
(
1.6
−
1.2
)
2
+
(
2.56
−
1.44
)
2
=
0.16
+
1.2544
=
1.4144
=
1.1892855
;
{\displaystyle a_{4}={\sqrt {(x_{4}-x_{3})^{2}+(z_{4}-z_{3})^{2}}}={\sqrt {(1.6-1.2)^{2}+(2.56-1.44)^{2}}}={\sqrt {0.16+1.2544}}={\sqrt {1.4144}}=1.1892855;}
a
5
=
(
x
5
−
x
4
)
2
+
(
z
5
−
z
4
)
2
=
(
2
−
1.6
)
2
+
(
4
−
2.56
)
2
=
0.16
+
2.0736
=
2.2336
=
1.494523335
;
{\displaystyle a_{5}={\sqrt {(x_{5}-x_{4})^{2}+(z_{5}-z_{4})^{2}}}={\sqrt {(2-1.6)^{2}+(4-2.56)^{2}}}={\sqrt {0.16+2.0736}}={\sqrt {2.2336}}=1.494523335;}
a
6
=
(
x
6
−
x
5
)
2
+
(
z
6
−
z
5
)
2
=
(
2.4
−
2
)
2
+
(
5.76
−
4
)
2
=
0.16
+
3.0976
=
3.2576
=
1.804882268
;
{\displaystyle a_{6}={\sqrt {(x_{6}-x_{5})^{2}+(z_{6}-z_{5})^{2}}}={\sqrt {(2.4-2)^{2}+(5.76-4)^{2}}}={\sqrt {0.16+3.0976}}={\sqrt {3.2576}}=1.804882268;}
a
7
=
(
x
7
−
x
6
)
2
+
(
z
7
−
z
6
)
2
=
(
2.8
−
2.4
)
2
+
(
7.84
−
5.76
)
2
=
0.16
+
4.3264
=
4.4864
=
2.118112367
;
{\displaystyle a_{7}={\sqrt {(x_{7}-x_{6})^{2}+(z_{7}-z_{6})^{2}}}={\sqrt {(2.8-2.4)^{2}+(7.84-5.76)^{2}}}={\sqrt {0.16+4.3264}}={\sqrt {4.4864}}=2.118112367;}
a
8
=
(
x
8
−
x
7
)
2
+
(
z
8
−
z
7
)
2
=
(
3.2
−
2.8
)
2
+
(
10.24
−
7.84
)
2
=
0.16
+
5.76
=
5.92
=
2.433105012
;
{\displaystyle a_{8}={\sqrt {(x_{8}-x_{7})^{2}+(z_{8}-z_{7})^{2}}}={\sqrt {(3.2-2.8)^{2}+(10.24-7.84)^{2}}}={\sqrt {0.16+5.76}}={\sqrt {5.92}}=2.433105012;}
a
9
=
(
x
9
−
x
8
)
2
+
(
z
9
−
z
8
)
2
=
(
3.6
−
3.2
)
2
+
(
12.96
−
10.24
)
2
=
0.16
+
7.3984
=
7.5584
=
2.749254444
;
{\displaystyle a_{9}={\sqrt {(x_{9}-x_{8})^{2}+(z_{9}-z_{8})^{2}}}={\sqrt {(3.6-3.2)^{2}+(12.96-10.24)^{2}}}={\sqrt {0.16+7.3984}}={\sqrt {7.5584}}=2.749254444;}
a
10
=
(
x
10
−
x
9
)
2
+
(
z
10
−
z
9
)
2
=
(
4
−
3.6
)
2
+
(
16
−
12.96
)
2
=
0.16
+
9.2416
=
9.4016
=
3.066202863.
{\displaystyle a_{10}={\sqrt {(x_{10}-x_{9})^{2}+(z_{10}-z_{9})^{2}}}={\sqrt {(4-3.6)^{2}+(16-12.96)^{2}}}={\sqrt {0.16+9.2416}}={\sqrt {9.4016}}=3.066202863.}
Toliau reikia sudėti visų atkarpų ilgį, kad gauti parabolės šakos ilgį, kai x kinta nuo 0 iki 4. Gauname:
L
=
a
1
+
a
2
+
a
3
+
a
4
+
a
5
+
a
6
+
a
7
+
a
8
+
a
9
+
a
10
=
{\displaystyle L=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}=}
=
0.430813184
+
0.624819974
+
0.894427191
+
1.1892855
+
1.494523335
+
1.804882268
+
2.118112367
+
2.433105012
+
2.749254444
+
3.066202863
=
16.80542614.
{\displaystyle =0.430813184+0.624819974+0.894427191+1.1892855+1.494523335+1.804882268+2.118112367+2.433105012+2.749254444+3.066202863=16.80542614.}
Padalinus į daugiau dalių atsakymas taptų panašesnis į atsakymą gautą integravimo budu.
Paraboloido paviršiaus plotas yra lygus:
S
=
2
π
(
r
1
a
1
+
r
2
a
2
+
r
3
a
3
+
r
4
a
4
+
r
5
a
5
+
r
6
a
6
+
r
7
a
7
+
r
8
a
8
+
r
9
a
9
+
r
10
a
10
)
=
{\displaystyle S=2\pi (r_{1}a_{1}+r_{2}a_{2}+r_{3}a_{3}+r_{4}a_{4}+r_{5}a_{5}+r_{6}a_{6}+r_{7}a_{7}+r_{8}a_{8}+r_{9}a_{9}+r_{10}a_{10})=}
=2
π
{\displaystyle \pi }
(0.4*0.430813184+0.8*0.624819974+1.2*0.894427191+1.6*1.1892855+2*1.494523335+2.4*1.804882268+2.8*2.118112367+3.2*2.433105012+3.6*2.749254444+4*3.066202863)=
=
2
π
(
0.172325273
+
0.499855979
+
1.073312629
+
1.9028568
+
2.98904667
+
4.331717443
+
5.930714628
+
7.785936038
+
9.897315998
+
12.26481145
)
=
2
π
46.84789291
=
93.69578582
π
=
294.3539924.
{\displaystyle =2\pi (0.172325273+0.499855979+1.073312629+1.9028568+2.98904667+4.331717443+5.930714628+7.785936038+9.897315998+12.26481145)=2\pi 46.84789291=93.69578582\pi =294.3539924.}
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
0
≤
x
≤
4.
{\displaystyle 0\leq x\leq 4.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Pasinaudodami integralų lentele
∫
x
2
+
a
d
x
=
x
2
a
+
x
2
+
a
2
ln
|
x
+
x
2
+
a
|
{\displaystyle \int {\sqrt {x^{2}+a}}\;{\mathsf {d}}x={\frac {x}{2}}{\sqrt {a+x^{2}}}+{\frac {a}{2}}\ln \left|x+{\sqrt {x^{2}+a}}\right|}
, gauname
L
=
∫
0
4
1
+
y
′
2
d
x
=
∫
0
4
1
+
(
2
x
)
2
d
x
=
∫
0
4
1
+
4
x
2
d
x
=
4
∫
0
4
1
4
+
x
2
d
x
=
{\displaystyle L=\int _{0}^{4}{\sqrt {1+y'^{2}}}dx=\int _{0}^{4}{\sqrt {1+(2x)^{2}}}dx=\int _{0}^{4}{\sqrt {1+4x^{2}}}dx={\sqrt {4}}\int _{0}^{4}{\sqrt {{1 \over 4}+x^{2}}}dx=}
=
2
(
x
2
0
,
25
+
x
2
+
0
,
25
2
ln
|
x
+
x
2
+
0
,
25
|
)
|
0
4
=
{\displaystyle =2({x \over 2}{\sqrt {0,25+x^{2}}}+{\frac {0,25}{2}}\ln \left|x+{\sqrt {x^{2}+0,25}}\right|)|_{0}^{4}=}
=
2
(
4
2
0
,
25
+
4
2
+
0
,
25
2
ln
|
4
+
4
2
+
0
,
25
|
)
−
2
(
0
2
0
,
25
+
0
2
+
0
,
25
2
ln
|
0
+
0
2
+
0
,
25
|
)
=
{\displaystyle =2({4 \over 2}{\sqrt {0,25+4^{2}}}+{\frac {0,25}{2}}\ln \left|4+{\sqrt {4^{2}+0,25}}\right|)-2({0 \over 2}{\sqrt {0,25+0^{2}}}+{\frac {0,25}{2}}\ln \left|0+{\sqrt {0^{2}+0,25}}\right|)=}
=
2
(
2
16
,
25
+
0
,
125
ln
|
4
+
16
,
25
|
)
−
2
(
0
+
0
,
125
ln
|
0
+
0
,
25
|
)
=
{\displaystyle =2(2{\sqrt {16,25}}+0,125\ln \left|4+{\sqrt {16,25}}\right|)-2(0+0,125\ln \left|0+{\sqrt {0,25}}\right|)=}
≈
2
(
2
⋅
4
,
031128874
+
0
,
125
ln
|
8
,
031128874
|
)
−
2
(
0
,
125
⋅
ln
|
0
,
5
|
)
≈
{\displaystyle \approx 2(2\cdot 4,031128874+0,125\ln |8,031128874|)-2(0,125\cdot \ln |0,5|)\approx }
≈
2
(
8
,
062257748
+
0
,
125
⋅
2
,
0833251
)
−
2
(
0
,
125
⋅
(
−
0
,
69314718
)
)
=
{\displaystyle \approx 2(8,062257748+0,125\cdot 2,0833251)-2(0,125\cdot (-0,69314718))=}
=
2
(
8
,
062257748
+
0
,
260415637
)
−
2
(
−
0
,
086643397
)
=
16
,
64534677
+
0
,
173286795
=
16
,
81863357.
{\displaystyle =2(8,062257748+0,260415637)-2(-0,086643397)=16,64534677+0,173286795=16,81863357.}
Palyginimui, linijos ilgis nuo taško (0; 0) iki taško (4; 16) yra
c
=
a
2
+
b
2
=
4
2
+
16
2
=
272
=
16
,
4924225.
{\displaystyle c={\sqrt {a^{2}+b^{2}}}={\sqrt {4^{2}+16^{2}}}={\sqrt {272}}=16,4924225.}
3.
Apskaičiuosime paviršiaus dalį paraboloido
x
2
+
y
2
=
z
,
{\displaystyle x^{2}+y^{2}=z,}
išpjautą cilindro
x
2
+
y
2
=
16.
{\displaystyle x^{2}+y^{2}=16.}
Paviršiaus ploto formulė yra
1
+
f
x
′
2
(
x
;
y
)
+
f
y
′
2
(
x
;
y
)
.
{\displaystyle {\sqrt {1+f_{x}'^{2}(x;y)+f_{y}'^{2}(x;y)}}.}
Taip kaip
∂
z
∂
x
=
2
x
,
∂
z
∂
y
=
2
y
,
{\displaystyle {\partial z \over \partial x}=2x,\;{\partial z \over \partial y}=2y,}
tai
S
=
∬
D
1
+
4
x
2
+
4
y
2
d
x
d
y
,
{\displaystyle S=\iint _{D}{\sqrt {1+4x^{2}+4y^{2}}}\;dx\;dy,}
kur D - apskritimas
x
2
+
y
2
≤
16
{\displaystyle x^{2}+y^{2}\leq 16}
plokštumoje XOY . Pereidami į poliarines koordinates gauname:
S
=
∬
P
1
+
4
ρ
2
ρ
d
ρ
d
ϕ
=
∫
0
2
π
d
ϕ
∫
0
4
ρ
1
+
4
ρ
2
d
ρ
=
{\displaystyle S=\iint _{P}{\sqrt {1+4\rho ^{2}}}\rho d\rho d\phi =\int _{0}^{2\pi }d\phi \int _{0}^{4}\rho {\sqrt {1+4\rho ^{2}}}d\rho =}
=
∫
0
2
π
d
ϕ
∫
0
4
1
+
4
ρ
2
d
(
1
+
4
ρ
2
)
8
=
1
8
∫
0
2
π
2
3
(
1
+
4
ρ
2
)
3
2
|
0
4
d
ϕ
=
1
12
∫
0
2
π
(
(
1
+
4
⋅
4
2
)
3
2
−
(
1
+
4
⋅
0
2
)
3
2
)
d
ϕ
=
1
12
∫
0
2
π
(
(
1
+
4
⋅
16
)
3
2
−
1
)
d
ϕ
=
{\displaystyle =\int _{0}^{2\pi }d\phi \int _{0}^{4}{\sqrt {1+4\rho ^{2}}}{d(1+4\rho ^{2}) \over 8}={1 \over 8}\int _{0}^{2\pi }{2 \over 3}(1+4\rho ^{2})^{3 \over 2}|_{0}^{4}d\phi ={1 \over 12}\int _{0}^{2\pi }((1+4\cdot 4^{2})^{3 \over 2}-(1+4\cdot 0^{2})^{3 \over 2})d\phi ={1 \over 12}\int _{0}^{2\pi }((1+4\cdot 16)^{3 \over 2}-1)d\phi =}
=
1
12
∫
0
2
π
(
65
3
2
−
1
)
d
ϕ
=
1
12
(
65
3
2
−
1
)
ϕ
|
0
2
π
=
1
12
⋅
(
65
3
2
−
1
)
⋅
(
2
π
−
0
)
=
π
6
⋅
(
274625
−
1
)
=
π
6
⋅
523.0467536
=
273.8666398
,
{\displaystyle ={1 \over 12}\int _{0}^{2\pi }(65^{3 \over 2}-1)d\phi ={1 \over 12}(65^{3 \over 2}-1)\phi |_{0}^{2\pi }={1 \over 12}\cdot (65^{3 \over 2}-1)\cdot (2\pi -0)={\frac {\pi }{6}}\cdot ({\sqrt {274625}}-1)={\frac {\pi }{6}}\cdot 523.0467536=273.8666398,}
kur
d
(
1
+
4
ρ
2
)
=
8
ρ
d
ρ
;
d
ρ
=
d
(
1
+
4
ρ
2
)
8
ρ
.
{\displaystyle d(1+4\rho ^{2})=8\rho d\rho ;\;d\rho ={d(1+4\rho ^{2}) \over 8\rho }.}
Palyginimui paviršiaus plotas cilindro be dviejų pagrindų, kurio spindulys r=4 ir aukštis h=16, yra lygus:
S
1
=
c
⋅
h
=
2
π
r
⋅
h
=
2
⋅
π
⋅
4
⋅
16
=
128
π
=
402.1238597.
{\displaystyle S_{1}=c\cdot h=2\pi r\cdot h=2\cdot \pi \cdot 4\cdot 16=128\pi =402.1238597.}
Dar vienas būdas patikrinti paraboloido plotą, bet kaip ir rutulio paviršiaus plotui šį formulė duos mažesnį ir visada neteisingą atsakymą:
S
=
2
π
(
r
1
(
z
1
−
z
0
)
+
r
2
(
z
2
−
z
1
)
+
r
3
(
z
3
−
z
2
)
+
r
4
(
z
4
−
z
3
)
+
r
5
(
z
5
−
z
4
)
+
r
6
(
z
6
−
z
5
)
+
r
7
(
z
7
−
z
6
)
+
r
8
(
z
8
−
z
7
)
+
r
9
(
z
9
−
z
8
)
+
r
10
(
z
10
−
z
9
)
)
=
{\displaystyle S=2\pi (r_{1}(z_{1}-z_{0})+r_{2}(z_{2}-z_{1})+r_{3}(z_{3}-z_{2})+r_{4}(z_{4}-z_{3})+r_{5}(z_{5}-z_{4})+r_{6}(z_{6}-z_{5})+r_{7}(z_{7}-z_{6})+r_{8}(z_{8}-z_{7})+r_{9}(z_{9}-z_{8})+r_{10}(z_{10}-z_{9}))=}
=
2
π
(
r
1
(
0.16
−
0
)
+
r
2
(
0.64
−
0.16
)
+
r
3
(
1.44
−
0.64
)
+
r
4
(
2.56
−
1.44
)
+
r
5
(
4
−
2.56
)
+
r
6
(
5.76
−
4
)
+
r
7
(
7.84
−
5.76
)
+
r
8
(
10.24
−
7.84
)
+
r
9
(
12.96
−
10.24
)
+
r
10
(
16
−
12.96
)
)
=
{\displaystyle =2\pi (r_{1}(0.16-0)+r_{2}(0.64-0.16)+r_{3}(1.44-0.64)+r_{4}(2.56-1.44)+r_{5}(4-2.56)+r_{6}(5.76-4)+r_{7}(7.84-5.76)+r_{8}(10.24-7.84)+r_{9}(12.96-10.24)+r_{10}(16-12.96))=}
=
2
π
(
0.4
⋅
0.16
+
0.8
⋅
0.48
+
1.2
⋅
0.8
+
1.6
⋅
1.12
+
2
⋅
1.44
+
2.4
⋅
1.76
+
2.8
⋅
2.08
+
3.2
⋅
2.4
+
3.6
⋅
2.72
+
4
⋅
3.04
)
=
{\displaystyle =2\pi (0.4\cdot 0.16+0.8\cdot 0.48+1.2\cdot 0.8+1.6\cdot 1.12+2\cdot 1.44+2.4\cdot 1.76+2.8\cdot 2.08+3.2\cdot 2.4+3.6\cdot 2.72+4\cdot 3.04)=}
=
2
π
(
0.064
+
0.384
+
0.96
+
1.792
+
2.88
+
4.224
+
5.824
+
7.68
+
9.792
+
12.16
)
=
2
π
45.76
=
91.52
π
=
287.5185597.
{\displaystyle =2\pi (0.064+0.384+0.96+1.792+2.88+4.224+5.824+7.68+9.792+12.16)=2\pi 45.76=91.52\pi =287.5185597.}
Atsakymas gavosi didesnis nei integruojant, nes dar nugali ilgų nutysusių pluoštų efektas tikriausiai dėl kvadratinės lygties, ko nėra rutulio skaičiavime, bet jei toks paviršiaus ploto skaičiavimas rutuliui garantuotai neteisingas, tai padalinus į daugiau dalių parabololoido paviršiaus plotas turėtų gautis mažesnis nei gautas integravimo budu. Be to pas rutulį yra labai stiprūs užsilenkimai ant galų, dėl ko prarandama labai daug ploto.
Paraboloidas.
Kūną riboja plokštuma xOy , cilindrinis paviršius
x
2
+
y
2
=
4
{\displaystyle x^{2}+y^{2}=4}
ir paraboloidas
z
=
x
2
+
y
2
.
{\displaystyle z=x^{2}+y^{2}.}
Apskaičiuokime to kūno tūrį. Kai D yra skritulis ant plokštumos xOy , tai
0
≤
ϕ
≤
2
π
,
0
≤
ρ
≤
4.
{\displaystyle 0\leq \phi \leq 2\pi ,\;0\leq \rho \leq 4.}
Tuomet
V
=
∬
D
(
x
2
+
y
2
)
d
x
d
y
=
∬
D
ρ
2
⋅
ρ
d
ρ
d
ϕ
=
∫
0
2
π
d
ϕ
∫
0
4
ρ
3
d
ρ
=
∫
0
2
π
ρ
4
4
|
0
4
d
ϕ
=
{\displaystyle V=\iint _{D}(x^{2}+y^{2})dxdy=\iint _{D}\rho ^{2}\cdot \rho d\rho d\phi =\int _{0}^{2\pi }d\phi \int _{0}^{4}\rho ^{3}d\rho =\int _{0}^{2\pi }{\rho ^{4} \over 4}|_{0}^{4}d\phi =}
=
(
4
4
4
−
0
4
4
)
∫
0
2
π
d
ϕ
=
256
4
ϕ
|
0
2
π
=
64
⋅
(
2
π
−
0
)
=
128
π
=
402.1238597.
{\displaystyle =({4^{4} \over 4}-{\frac {0^{4}}{4}})\int _{0}^{2\pi }d\phi ={256 \over 4}\phi |_{0}^{2\pi }=64\cdot (2\pi -0)=128\pi =402.1238597.}
Patikrinsime paraboloido
z
=
x
2
+
y
2
{\displaystyle z=x^{2}+y^{2}}
tūrį, kai
0
≤
x
≤
4
{\displaystyle 0\leq x\leq 4}
,
0
≤
y
≤
4
{\displaystyle 0\leq y\leq 4}
, 0<z<16, padalindami parabolės šaką į 10 atkarpų-tiesių, kai 0<x<4. Kiekvienos atkarpos projekcijos į Ox ašį ilgis yra 0,4 (y reikšmės tuomet visada būna 0). Todėl reikiau gauti visas x reikšmes:
x
0
=
0
;
{\displaystyle x_{0}=0;}
x
1
=
0.4
;
{\displaystyle x_{1}=0.4;}
x
2
=
2
⋅
0.4
=
0.8
;
{\displaystyle x_{2}=2\cdot 0.4=0.8;}
x
3
=
3
⋅
0.4
=
1.2
;
{\displaystyle x_{3}=3\cdot 0.4=1.2;}
x
4
=
4
⋅
0.4
=
1.6
;
{\displaystyle x_{4}=4\cdot 0.4=1.6;}
x
5
=
5
⋅
0.4
=
2
;
{\displaystyle x_{5}=5\cdot 0.4=2;}
x
6
=
6
⋅
0.4
=
2.4
;
{\displaystyle x_{6}=6\cdot 0.4=2.4;}
x
7
=
7
⋅
0.4
=
2.8
;
{\displaystyle x_{7}=7\cdot 0.4=2.8;}
x
8
=
8
⋅
0.4
=
3.2
;
{\displaystyle x_{8}=8\cdot 0.4=3.2;}
x
9
=
9
⋅
0.4
=
3.6
;
{\displaystyle x_{9}=9\cdot 0.4=3.6;}
x
10
=
10
⋅
0.4
=
4.
{\displaystyle x_{10}=10\cdot 0.4=4.}
Dabar toliau reikia surasti visas z reikšmes, įstačius x reikšmes:
z
0
=
x
0
2
=
0
2
=
0
;
{\displaystyle z_{0}=x_{0}^{2}=0^{2}=0;}
z
1
=
x
1
2
=
0.4
2
=
0.16
;
{\displaystyle z_{1}=x_{1}^{2}=0.4^{2}=0.16;}
z
2
=
x
2
2
=
0.8
2
=
0.64
;
{\displaystyle z_{2}=x_{2}^{2}=0.8^{2}=0.64;}
z
3
=
x
3
2
=
1.2
2
=
1.44
;
{\displaystyle z_{3}=x_{3}^{2}=1.2^{2}=1.44;}
z
4
=
x
4
2
=
1.6
2
=
2.56
;
{\displaystyle z_{4}=x_{4}^{2}=1.6^{2}=2.56;}
z
5
=
x
5
2
=
2
2
=
4
;
{\displaystyle z_{5}=x_{5}^{2}=2^{2}=4;}
z
6
=
x
6
2
=
2.4
2
=
5.76
;
{\displaystyle z_{6}=x_{6}^{2}=2.4^{2}=5.76;}
z
7
=
x
7
2
=
2.8
2
=
7.84
;
{\displaystyle z_{7}=x_{7}^{2}=2.8^{2}=7.84;}
z
8
=
x
8
2
=
3.2
2
=
10.24
;
{\displaystyle z_{8}=x_{8}^{2}=3.2^{2}=10.24;}
z
9
=
x
9
2
=
3.6
2
=
12.96
;
{\displaystyle z_{9}=x_{9}^{2}=3.6^{2}=12.96;}
z
10
=
x
10
2
=
4
2
=
16.
{\displaystyle z_{10}=x_{10}^{2}=4^{2}=16.}
Dabar sudėsime 10 diskų, kai kiekvieno disko aukštis yra
h
1
=
z
1
−
z
0
{\displaystyle h_{1}=z_{1}-z_{0}}
,
h
2
=
z
2
−
z
1
{\displaystyle h_{2}=z_{2}-z_{1}}
,
h
3
=
z
3
−
z
2
{\displaystyle h_{3}=z_{3}-z_{2}}
ir taip toliau. Gauname paraboloido tūrį:
V
=
π
(
r
1
2
(
z
1
−
z
0
)
+
r
2
2
(
z
2
−
z
1
)
+
r
3
2
(
z
3
−
z
2
)
+
r
4
2
(
z
4
−
z
3
)
+
r
5
2
(
z
5
−
z
4
)
+
r
6
2
(
z
6
−
z
5
)
+
r
7
2
(
z
7
−
z
6
)
+
r
8
2
(
z
8
−
z
7
)
+
r
9
2
(
z
9
−
z
8
)
+
r
10
2
(
z
10
−
z
9
)
)
=
{\displaystyle V=\pi (r_{1}^{2}(z_{1}-z_{0})+r_{2}^{2}(z_{2}-z_{1})+r_{3}^{2}(z_{3}-z_{2})+r_{4}^{2}(z_{4}-z_{3})+r_{5}^{2}(z_{5}-z_{4})+r_{6}^{2}(z_{6}-z_{5})+r_{7}^{2}(z_{7}-z_{6})+r_{8}^{2}(z_{8}-z_{7})+r_{9}^{2}(z_{9}-z_{8})+r_{10}^{2}(z_{10}-z_{9}))=}
=
π
(
0.4
2
(
0.16
−
0
)
+
0.8
2
(
0.64
−
0.16
)
+
1.2
2
(
1.44
−
0.64
)
+
1.6
2
(
2.56
−
1.44
)
+
2
2
(
4
−
2.56
)
+
2.4
2
(
5.76
−
4
)
+
2.8
2
(
7.84
−
5.76
)
+
3.2
2
(
10.24
−
7.84
)
+
3.6
2
(
12.96
−
10.24
)
+
4
2
(
16
−
12.96
)
)
=
{\displaystyle =\pi (0.4^{2}(0.16-0)+0.8^{2}(0.64-0.16)+1.2^{2}(1.44-0.64)+1.6^{2}(2.56-1.44)+2^{2}(4-2.56)+2.4^{2}(5.76-4)+2.8^{2}(7.84-5.76)+3.2^{2}(10.24-7.84)+3.6^{2}(12.96-10.24)+4^{2}(16-12.96))=}
=
π
(
0.4
2
⋅
0.16
+
0.8
2
⋅
0.48
+
1.2
2
⋅
0.8
+
1.6
2
⋅
1.12
+
2
2
⋅
1.44
+
2.4
2
⋅
1.76
+
2.8
2
⋅
2.08
+
3.2
2
⋅
2.4
+
3.6
2
⋅
2.72
+
4
2
⋅
3.04
)
=
{\displaystyle =\pi (0.4^{2}\cdot 0.16+0.8^{2}\cdot 0.48+1.2^{2}\cdot 0.8+1.6^{2}\cdot 1.12+2^{2}\cdot 1.44+2.4^{2}\cdot 1.76+2.8^{2}\cdot 2.08+3.2^{2}\cdot 2.4+3.6^{2}\cdot 2.72+4^{2}\cdot 3.04)=}
=
π
(
0.4
⋅
0.064
+
0.8
⋅
0.384
+
1.2
⋅
0.96
+
1.6
⋅
1.792
+
2
⋅
2.88
+
2.4
⋅
4.224
+
2.8
⋅
5.824
+
3.2
⋅
7.68
+
3.6
⋅
9.792
+
4
⋅
12.16
)
=
{\displaystyle =\pi (0.4\cdot 0.064+0.8\cdot 0.384+1.2\cdot 0.96+1.6\cdot 1.792+2\cdot 2.88+2.4\cdot 4.224+2.8\cdot 5.824+3.2\cdot 7.68+3.6\cdot 9.792+4\cdot 12.16)=}
=
π
(
0.16
(
0.16
−
0
)
+
0.64
(
0.64
−
0.16
)
+
1.44
(
1.44
−
0.64
)
+
2.56
(
2.56
−
1.44
)
+
4
(
4
−
2.56
)
+
5.76
(
5.76
−
4
)
+
7.84
(
7.84
−
5.76
)
+
10.24
(
10.24
−
7.84
)
+
12.96
(
12.96
−
10.24
)
+
16
(
16
−
12.96
)
)
=
{\displaystyle =\pi (0.16(0.16-0)+0.64(0.64-0.16)+1.44(1.44-0.64)+2.56(2.56-1.44)+4(4-2.56)+5.76(5.76-4)+7.84(7.84-5.76)+10.24(10.24-7.84)+12.96(12.96-10.24)+16(16-12.96))=}
=
π
(
0.16
⋅
0.16
+
0.64
⋅
0.48
+
1.44
⋅
0.8
+
2.56
⋅
1.12
+
4
⋅
1.44
+
5.76
⋅
1.76
+
7.84
⋅
2.08
+
10.24
⋅
2.4
+
12.96
⋅
2.72
+
16
⋅
3.04
)
=
{\displaystyle =\pi (0.16\cdot 0.16+0.64\cdot 0.48+1.44\cdot 0.8+2.56\cdot 1.12+4\cdot 1.44+5.76\cdot 1.76+7.84\cdot 2.08+10.24\cdot 2.4+12.96\cdot 2.72+16\cdot 3.04)=}
=
π
(
0.0256
+
0.3072
+
1.152
+
2.8672
+
5.76
+
10.1376
+
16.3072
+
24.576
+
35.2512
+
48.64
)
=
145.024
π
=
455.606333.
{\displaystyle =\pi (0.0256+0.3072+1.152+2.8672+5.76+10.1376+16.3072+24.576+35.2512+48.64)=145.024\pi =455.606333.}
Na, gavosi daugiau nei integravimo budu
V
=
402.1238597
,
{\displaystyle V=402.1238597,}
taip ir turėjo gautis. Padalinus į daugiau plokštesnių diskų atsakymas gali būti gautas neribotai tikslus, toks pat kaip integruojant.
Paraboloidas.
Kūną riboja plokštuma xOy , cilindrinis paviršius
x
2
+
y
2
=
4
{\displaystyle x^{2}+y^{2}=4}
ir paraboloidas
z
=
x
2
+
y
2
.
{\displaystyle z=x^{2}+y^{2}.}
Apskaičiuokime to kūno tūrį. Kai D yra skritulis ant plokštumos xOy , tai
0
≤
ϕ
≤
2
π
,
0
≤
ρ
≤
4.
{\displaystyle 0\leq \phi \leq 2\pi ,\;0\leq \rho \leq 4.}
Tuomet
V
=
∬
D
(
x
2
+
y
2
)
d
x
d
y
=
∬
D
ρ
2
⋅
ρ
d
ρ
d
ϕ
=
∫
0
2
π
d
ϕ
∫
0
4
ρ
3
d
ρ
=
∫
0
2
π
ρ
4
4
|
0
4
d
ϕ
=
{\displaystyle V=\iint _{D}(x^{2}+y^{2})dxdy=\iint _{D}\rho ^{2}\cdot \rho d\rho d\phi =\int _{0}^{2\pi }d\phi \int _{0}^{4}\rho ^{3}d\rho =\int _{0}^{2\pi }{\rho ^{4} \over 4}|_{0}^{4}d\phi =}
=
(
4
4
4
−
0
4
4
)
∫
0
2
π
d
ϕ
=
256
4
ϕ
|
0
2
π
=
64
⋅
(
2
π
−
0
)
=
128
π
=
402.1238597.
{\displaystyle =({4^{4} \over 4}-{\frac {0^{4}}{4}})\int _{0}^{2\pi }d\phi ={256 \over 4}\phi |_{0}^{2\pi }=64\cdot (2\pi -0)=128\pi =402.1238597.}
Patikrinsime paraboloido
z
=
x
2
+
y
2
{\displaystyle z=x^{2}+y^{2}}
tūrį, kai
0
≤
x
≤
4
{\displaystyle 0\leq x\leq 4}
,
0
≤
y
≤
4
{\displaystyle 0\leq y\leq 4}
, 0<z<16, padalindami parabolės šaką į 10 atkarpų-tiesių, kai 0<x<4. Kiekvienos atkarpos projekcijos į Ox ašį ilgis yra 0,4 (y reikšmės tuomet visada būna 0). Todėl reikiau gauti visas x reikšmes.
Reikia surasti visas z reikšmes, įstačius x reikšmes:
z
0
=
x
0
2
=
0
2
=
0
;
{\displaystyle z_{0}=x_{0}^{2}=0^{2}=0;}
z
1
=
x
1
2
=
0.2
2
=
0.04
;
{\displaystyle z_{1}=x_{1}^{2}=0.2^{2}=0.04;}
z
2
=
x
2
2
=
0.4
2
=
0.16
;
{\displaystyle z_{2}=x_{2}^{2}=0.4^{2}=0.16;}
z
3
=
x
3
2
=
0.6
2
=
0.36
;
{\displaystyle z_{3}=x_{3}^{2}=0.6^{2}=0.36;}
z
4
=
x
4
2
=
0.8
2
=
0.64
;
{\displaystyle z_{4}=x_{4}^{2}=0.8^{2}=0.64;}
z
5
=
x
5
2
=
1
2
=
1
;
{\displaystyle z_{5}=x_{5}^{2}=1^{2}=1;}
z
6
=
x
6
2
=
1.2
2
=
1.44
;
{\displaystyle z_{6}=x_{6}^{2}=1.2^{2}=1.44;}
z
7
=
x
7
2
=
1.4
2
=
1.96
;
{\displaystyle z_{7}=x_{7}^{2}=1.4^{2}=1.96;}
z
8
=
x
8
2
=
1.6
2
=
2.56
;
{\displaystyle z_{8}=x_{8}^{2}=1.6^{2}=2.56;}
z
9
=
x
9
2
=
1.8
2
=
3.24
;
{\displaystyle z_{9}=x_{9}^{2}=1.8^{2}=3.24;}
z
10
=
x
10
2
=
2
2
=
4
;
{\displaystyle z_{10}=x_{10}^{2}=2^{2}=4;}
z
11
=
x
11
2
=
2.2
2
=
4.84
;
{\displaystyle z_{11}=x_{11}^{2}=2.2^{2}=4.84;}
z
12
=
x
12
2
=
2.4
2
=
5.76
;
{\displaystyle z_{12}=x_{12}^{2}=2.4^{2}=5.76;}
z
13
=
x
13
2
=
2.6
2
=
6.76
;
{\displaystyle z_{13}=x_{13}^{2}=2.6^{2}=6.76;}
z
14
=
x
14
2
=
2.8
2
=
7.84
;
{\displaystyle z_{14}=x_{14}^{2}=2.8^{2}=7.84;}
z
15
=
x
15
2
=
3
2
=
9
;
{\displaystyle z_{15}=x_{15}^{2}=3^{2}=9;}
z
16
=
x
16
2
=
3.2
2
=
10.24
;
{\displaystyle z_{16}=x_{16}^{2}=3.2^{2}=10.24;}
z
17
=
x
17
2
=
3.4
2
=
11.56
;
{\displaystyle z_{17}=x_{17}^{2}=3.4^{2}=11.56;}
z
18
=
x
18
2
=
3.6
2
=
12.96
;
{\displaystyle z_{18}=x_{18}^{2}=3.6^{2}=12.96;}
z
19
=
x
19
2
=
3.8
2
=
14.44
;
{\displaystyle z_{19}=x_{19}^{2}=3.8^{2}=14.44;}
z
20
=
x
20
2
=
4
2
=
16.
{\displaystyle z_{20}=x_{20}^{2}=4^{2}=16.}
Dabar sudėsime 20 diskų, kai kiekvieno disko aukštis yra
h
1
=
z
1
−
z
0
{\displaystyle h_{1}=z_{1}-z_{0}}
,
h
2
=
z
2
−
z
1
{\displaystyle h_{2}=z_{2}-z_{1}}
,
h
3
=
z
3
−
z
2
{\displaystyle h_{3}=z_{3}-z_{2}}
ir taip toliau. Gauname visų diskų tūrius padalintus iš
π
{\displaystyle \pi }
:
a
1
=
r
1
2
(
z
1
−
z
0
)
=
0.2
2
(
0.04
−
0
)
=
0.04
⋅
0.04
=
0.0016
;
{\displaystyle a_{1}=r_{1}^{2}(z_{1}-z_{0})=0.2^{2}(0.04-0)=0.04\cdot 0.04=0.0016;}
a
2
=
r
2
2
(
z
2
−
z
1
)
=
0.4
2
(
0.16
−
0.04
)
=
0.16
⋅
0.12
=
0.0192
;
{\displaystyle a_{2}=r_{2}^{2}(z_{2}-z_{1})=0.4^{2}(0.16-0.04)=0.16\cdot 0.12=0.0192;}
a
3
=
r
3
2
(
z
3
−
z
2
)
=
0.6
2
(
0.36
−
0.16
)
=
0.36
⋅
0.2
=
0.072
;
{\displaystyle a_{3}=r_{3}^{2}(z_{3}-z_{2})=0.6^{2}(0.36-0.16)=0.36\cdot 0.2=0.072;}
a
4
=
r
4
2
(
z
4
−
z
3
)
=
0.8
2
(
0.64
−
0.36
)
0.64
⋅
0.28
=
0.1792
;
{\displaystyle a_{4}=r_{4}^{2}(z_{4}-z_{3})=0.8^{2}(0.64-0.36)0.64\cdot 0.28=0.1792;}
a
5
=
r
5
2
(
z
5
−
z
4
)
=
1
2
(
1
−
0.64
)
=
1
⋅
0.36
=
0.36
;
{\displaystyle a_{5}=r_{5}^{2}(z_{5}-z_{4})=1^{2}(1-0.64)=1\cdot 0.36=0.36;}
a
6
=
r
6
2
(
z
6
−
z
5
)
=
1.2
2
(
1.44
−
1
)
=
1.44
⋅
0.44
=
0.6336
;
{\displaystyle a_{6}=r_{6}^{2}(z_{6}-z_{5})=1.2^{2}(1.44-1)=1.44\cdot 0.44=0.6336;}
a
7
=
r
7
2
(
z
7
−
z
6
)
=
1.4
2
(
1.96
−
1.44
)
=
1.96
⋅
0.52
=
1.0192
;
{\displaystyle a_{7}=r_{7}^{2}(z_{7}-z_{6})=1.4^{2}(1.96-1.44)=1.96\cdot 0.52=1.0192;}
a
8
=
r
8
2
(
z
8
−
z
7
)
=
1.6
2
(
2.56
−
1.96
)
=
2.56
⋅
0.6
=
1.536
;
{\displaystyle a_{8}=r_{8}^{2}(z_{8}-z_{7})=1.6^{2}(2.56-1.96)=2.56\cdot 0.6=1.536;}
a
9
=
r
9
2
(
z
9
−
z
8
)
=
1.8
2
(
3.24
−
2.56
)
=
3.24
⋅
0.68
=
2.2032
;
{\displaystyle a_{9}=r_{9}^{2}(z_{9}-z_{8})=1.8^{2}(3.24-2.56)=3.24\cdot 0.68=2.2032;}
a
10
=
r
10
2
(
z
10
−
z
9
)
=
2
2
(
4
−
3.24
)
=
4
⋅
0.76
=
3.04
;
{\displaystyle a_{10}=r_{10}^{2}(z_{10}-z_{9})=2^{2}(4-3.24)=4\cdot 0.76=3.04;}
a
11
=
r
11
2
(
z
11
−
z
10
)
=
2.2
2
(
4.84
−
4
)
=
4.84
⋅
0.84
=
4.0656
;
{\displaystyle a_{11}=r_{11}^{2}(z_{11}-z_{10})=2.2^{2}(4.84-4)=4.84\cdot 0.84=4.0656;}
a
12
=
r
12
2
(
z
12
−
z
11
)
=
2.4
2
(
5.76
−
4.84
)
=
5.76
⋅
0.92
=
5.2992
;
{\displaystyle a_{12}=r_{12}^{2}(z_{12}-z_{11})=2.4^{2}(5.76-4.84)=5.76\cdot 0.92=5.2992;}
a
13
=
r
13
2
(
z
13
−
z
12
)
=
2.6
2
(
6.76
−
5.76
)
=
6.76
⋅
1
=
6.76
;
{\displaystyle a_{13}=r_{13}^{2}(z_{13}-z_{12})=2.6^{2}(6.76-5.76)=6.76\cdot 1=6.76;}
a
14
=
r
14
2
(
z
14
−
z
13
)
=
2.8
2
(
7.84
−
6.76
)
=
7.84
⋅
1.08
=
8.4672
;
{\displaystyle a_{14}=r_{14}^{2}(z_{14}-z_{13})=2.8^{2}(7.84-6.76)=7.84\cdot 1.08=8.4672;}
a
15
=
r
15
2
(
z
15
−
z
14
)
=
3
2
(
9
−
7.84
)
=
9
⋅
1.16
=
10.44
;
{\displaystyle a_{15}=r_{15}^{2}(z_{15}-z_{14})=3^{2}(9-7.84)=9\cdot 1.16=10.44;}
a
16
=
r
16
2
(
z
16
−
z
15
)
=
3.2
2
(
10.24
−
9
)
=
10.24
⋅
1.24
=
12.6976
;
{\displaystyle a_{16}=r_{16}^{2}(z_{16}-z_{15})=3.2^{2}(10.24-9)=10.24\cdot 1.24=12.6976;}
a
17
=
r
17
2
(
z
17
−
z
16
)
=
3.4
2
(
11.56
−
10.24
)
=
11.56
⋅
1.32
=
15.2592
;
{\displaystyle a_{17}=r_{17}^{2}(z_{17}-z_{16})=3.4^{2}(11.56-10.24)=11.56\cdot 1.32=15.2592;}
a
18
=
r
18
2
(
z
18
−
z
17
)
=
3.6
2
(
12.96
−
11.56
)
=
12.96
⋅
1.4
=
18.144
;
{\displaystyle a_{18}=r_{18}^{2}(z_{18}-z_{17})=3.6^{2}(12.96-11.56)=12.96\cdot 1.4=18.144;}
a
19
=
r
19
2
(
z
19
−
z
18
)
=
3.8
2
(
14.44
−
12.96
)
=
14.44
⋅
1.48
=
21.3712
;
{\displaystyle a_{19}=r_{19}^{2}(z_{19}-z_{18})=3.8^{2}(14.44-12.96)=14.44\cdot 1.48=21.3712;}
a
20
=
r
20
2
(
z
20
−
z
19
)
=
4
2
(
16
−
14.44
)
=
16
⋅
1.56
=
24.96.
{\displaystyle a_{20}=r_{20}^{2}(z_{20}-z_{19})=4^{2}(16-14.44)=16\cdot 1.56=24.96.}
Dabar sudėsime 20 diskų, kai kiekvieno disko aukštis yra
h
1
=
z
1
−
z
0
{\displaystyle h_{1}=z_{1}-z_{0}}
,
h
2
=
z
2
−
z
1
{\displaystyle h_{2}=z_{2}-z_{1}}
,
h
3
=
z
3
−
z
2
{\displaystyle h_{3}=z_{3}-z_{2}}
ir taip toliau. Gauname paraboloido tūrį:
V
=
π
(
a
1
+
a
2
+
a
3
+
a
4
+
a
5
+
a
6
+
a
7
+
a
8
+
a
9
+
a
10
+
{\displaystyle V=\pi (a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}+}
+
a
11
+
a
12
+
a
13
+
a
14
+
a
15
+
a
16
+
a
17
+
a
18
+
a
19
+
a
20
)
=
{\displaystyle +a_{11}+a_{12}+a_{13}+a_{14}+a_{15}+a_{16}+a_{17}+a_{18}+a_{19}+a_{20})=}
=
π
(
0.0016
+
0.0192
+
0.072
+
0.1792
+
0.36
+
0.6336
+
1.0192
+
1.536
+
2.2032
+
3.04
+
{\displaystyle =\pi (0.0016+0.0192+0.072+0.1792+0.36+0.6336+1.0192+1.536+2.2032+3.04+}
+
4.0656
+
5.2992
+
6.76
+
8.4672
+
10.44
+
12.6976
+
15.2592
+
18.144
+
21.3712
+
24.96
)
=
{\displaystyle +4.0656+5.2992+6.76+8.4672+10.44+12.6976+15.2592+18.144+21.3712+24.96)=}
=
π
(
9.064
+
127.464
)
=
136.528
π
=
428.9153618.
{\displaystyle =\pi (9.064+127.464)=136.528\pi =428.9153618.}
1.
Apskaičiuosime integralą
∬
S
z
d
S
{\displaystyle \iint _{S}zdS}
dalyje piltuvėlio paviršiaus
z
=
x
2
+
y
2
,
1
≤
z
≤
2.
{\displaystyle z={\sqrt {x^{2}+y^{2}}},\;1\leq z\leq 2.}
Paviršius S projektuojasi į plokštumą XOY srityje D , kuri yra žiedas
1
≤
x
2
+
y
2
≤
4.
{\displaystyle 1\leq x^{2}+y^{2}\leq 4.}
Šitame žiede funkcijos
z
=
x
2
+
y
2
,
z
x
′
=
x
x
2
+
y
2
,
z
y
′
=
y
x
2
+
y
2
{\displaystyle z={\sqrt {x^{2}+y^{2}}},\;z_{x}'={x \over {\sqrt {x^{2}+y^{2}}}},\;z_{y}'={y \over {\sqrt {x^{2}+y^{2}}}}}
- netrūkios. Todėl
∬
S
z
d
S
=
∬
D
x
2
+
y
2
1
+
x
2
x
2
+
y
2
+
y
2
x
2
+
y
2
d
x
d
y
=
{\displaystyle \iint _{S}zdS=\iint _{D}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+{x^{2} \over x^{2}+y^{2}}+{y^{2} \over x^{2}+y^{2}}}}dxdy=}
=
∬
D
x
2
+
y
2
2
d
x
d
y
=
2
∫
0
2
π
d
ϕ
∫
1
2
ρ
2
d
ρ
=
2
∫
0
2
π
ρ
3
3
|
1
2
d
ϕ
=
2
∫
0
2
π
7
3
d
ϕ
=
14
2
π
3
=
20.73345371.
{\displaystyle =\iint _{D}{\sqrt {x^{2}+y^{2}}}{\sqrt {2}}dxdy={\sqrt {2}}\int _{0}^{2\pi }d\phi \int _{1}^{2}\rho ^{2}d\rho ={\sqrt {2}}\int _{0}^{2\pi }{\rho ^{3} \over 3}|_{1}^{2}d\phi ={\sqrt {2}}\int _{0}^{2\pi }{7 \over 3}d\phi ={14{\sqrt {2}}\pi \over 3}=20.73345371.}
Yra tam tikri patikimi būdai patikrinti ar gautas paviršiaus plotas nėra visiška nesamonė.
1. Ieškomas plotas yra, kai z koordinatė kinta nuo 1 iki 2. Todėl mes pasirenkame cilindrą, kurio aukštis h=2-1=1. Taip pat mes žinome, kad apskrimo ilgis yra
c
=
2
π
r
{\displaystyle c=2\pi r}
. Todėl cilindro be dviejų pagrindų plotas, kai spindulys r=2 (tai maksimalus spindulys pas vestuvinės suknelės formos figurą, kurios paviršiaus plotą radome integruojant) yra:
S
1
=
c
⋅
h
=
2
π
r
⋅
h
=
2
⋅
π
⋅
2
⋅
1
=
4
π
=
12.56637061.
{\displaystyle S_{1}=c\cdot h=2\pi r\cdot h=2\cdot \pi \cdot 2\cdot 1=4\pi =12.56637061.}
Kaip nebūtų keista, netgi su tokiu milžinišku spinduliu, cilindro (be apatinio ir viršutinio pagrindų) paviršiaus plotą gavome mažesnį nei plotas gautas integruojant.
2. Todėl mes padidinsime h ilgį, kad logiškai neįmanoma būtų gauti mažesnio ploto. Apie čia kalbama, tuoj paaiškės. Šįkart h yra įžambinė trikampio, kuris turi du statinius
y
3
=
y
2
−
y
1
=
2
−
1
=
1
{\displaystyle y_{3}=y_{2}-y_{1}=2-1=1}
ir
z
3
=
z
2
−
z
1
=
2
−
1
=
1
{\displaystyle z_{3}=z_{2}-z_{1}=2-1=1}
(kaip matyti iš paveikslėlio,
z
3
{\displaystyle z_{3}}
yra aukščiausias taškas, o
y
3
{\displaystyle y_{3}}
yra toliausias taškas ant Oy ašies). Tuomet
h
=
y
+
z
=
1
+
1
=
2
=
1.414213562.
{\displaystyle h={\sqrt {y+z}}={\sqrt {1+1}}={\sqrt {2}}=1.414213562.}
Dabar apskritimo ilgį c nekeisime ir paimsime maksimalią piltuvėlio figuros c , o tuo pačiu ir
r
=
2
{\displaystyle r=2}
reikšmę. O dabar galima apskaičiuoti paviršiaus plotą cilindro be dviejų pagrindų, kurio r=2 ir
h
=
2
,
{\displaystyle h={\sqrt {2}},}
taigi:
S
2
=
c
⋅
h
=
2
π
r
⋅
h
=
2
⋅
π
⋅
2
⋅
2
=
4
2
⋅
π
=
17.77153175.
{\displaystyle S_{2}=c\cdot h=2\pi r\cdot h=2\cdot \pi \cdot 2\cdot {\sqrt {2}}=4{\sqrt {2}}\cdot \pi =17.77153175.}
Belieka konstatuoti, kad paviršiaus ploto skaičiavimo formulė yra neteisinga, nesvarbu kiek daug matematikai deda pastangų į jos išsaugojimą ir propogavima visose aukštosios matematikos knygose. Nors ką gali žinoti, paraboloido (arba kitų figurų) paviršiaus ploto skaičiavimui ši formulė gali būti teisinga.
3. Didelė tikimybė, kad tikrasis piltuvėlio figūros plotas yra pusė ploto gauto integravimo budu. Kūgio Paviršiaus ploto formulė be pagrindo yra
S
=
π
R
l
,
{\displaystyle S=\pi Rl,}
kur R yra pagrindo spindulys, o l yra apotema ir didžiojo kūgio yra lygi
l
d
=
R
2
+
H
2
=
2
2
+
2
2
=
8
=
2
2
.
{\displaystyle l_{d}={\sqrt {R^{2}+H^{2}}}={\sqrt {2^{2}+2^{2}}}={\sqrt {8}}=2{\sqrt {2}}.}
O mažojo kūgio apotema yra lygi
l
m
=
r
2
+
h
2
=
1
2
+
1
2
=
2
.
{\displaystyle l_{m}={\sqrt {r^{2}+h^{2}}}={\sqrt {1^{2}+1^{2}}}={\sqrt {2}}.}
Dabar galime rasti piltuvėlio formos figuros tikrąjį plotą:
S
3
=
S
d
−
S
m
=
π
R
l
d
−
π
r
l
m
=
π
⋅
2
⋅
2
2
−
π
⋅
1
⋅
2
=
4
π
2
−
π
2
=
3
π
2
=
13.32864881.
{\displaystyle S_{3}=S_{d}-S_{m}=\pi Rl_{d}-\pi rl_{m}=\pi \cdot 2\cdot 2{\sqrt {2}}-\pi \cdot 1\cdot {\sqrt {2}}=4\pi {\sqrt {2}}-\pi {\sqrt {2}}=3\pi {\sqrt {2}}=13.32864881.}
Galimas daiktas, kad integruoti reikia kitaip:
∬
S
d
S
=
∬
D
1
+
x
2
x
2
+
y
2
+
y
2
x
2
+
y
2
d
x
d
y
=
∬
D
2
d
x
d
y
=
2
∫
0
2
π
d
ϕ
∫
1
2
ρ
d
ρ
=
2
∫
0
2
π
ρ
2
2
|
1
2
d
ϕ
=
{\displaystyle \iint _{S}dS=\iint _{D}{\sqrt {1+{x^{2} \over x^{2}+y^{2}}+{y^{2} \over x^{2}+y^{2}}}}dxdy=\iint _{D}{\sqrt {2}}dxdy={\sqrt {2}}\int _{0}^{2\pi }d\phi \int _{1}^{2}\rho d\rho ={\sqrt {2}}\int _{0}^{2\pi }{\rho ^{2} \over 2}|_{1}^{2}d\phi =}
=
2
∫
0
2
π
(
2
2
2
−
1
2
2
)
d
ϕ
=
2
∫
0
2
π
3
2
d
ϕ
=
2
⋅
3
2
ϕ
|
0
2
π
=
3
2
2
(
2
π
−
0
)
=
3
π
2
=
13.32864881.
{\displaystyle ={\sqrt {2}}\int _{0}^{2\pi }({2^{2} \over 2}-{1^{2} \over 2})d\phi ={\sqrt {2}}\int _{0}^{2\pi }{3 \over 2}d\phi ={\sqrt {2}}\cdot {3 \over 2}\phi |_{0}^{2\pi }={3{\sqrt {2}} \over 2}(2\pi -0)=3\pi {\sqrt {2}}=13.32864881.}
Viskas teisingai.
Vaizdas:Integral379380.jpg 379.
Rasime tūrį kūno V , apriboto paviršiais
y
=
x
2
;
{\displaystyle y=x^{2};}
y
=
1
;
{\displaystyle y=1;}
z
=
0
;
{\displaystyle z=0;}
z
=
x
2
+
y
2
.
{\displaystyle z=x^{2}+y^{2}.}
Taip kaip šis kūnas yra cilindrinis kūnas su pagrindu D , apribotas iš viršaus paraboloidu
z
=
x
2
+
y
2
,
{\displaystyle z=x^{2}+y^{2},}
tai turime:
V
=
∬
D
(
x
2
+
y
2
)
d
x
d
y
=
2
∫
0
1
d
y
∫
0
y
(
x
2
+
y
2
)
d
x
=
2
∫
0
1
(
x
3
3
+
x
y
2
)
|
0
y
=
2
∫
0
1
(
1
3
y
3
2
+
y
5
2
)
d
y
=
{\displaystyle V=\iint _{D}(x^{2}+y^{2})dxdy=2\int _{0}^{1}dy\int _{0}^{\sqrt {y}}(x^{2}+y^{2})dx=2\int _{0}^{1}({x^{3} \over 3}+xy^{2})|_{0}^{\sqrt {y}}=2\int _{0}^{1}({1 \over 3}y^{3 \over 2}+y^{5 \over 2})dy=}
=
2
(
2
3
⋅
5
y
5
2
+
2
7
y
7
2
)
|
0
1
=
2
(
2
15
+
2
7
)
=
88
105
.
{\displaystyle =2({2 \over 3\cdot 5}y^{5 \over 2}+{2 \over 7}y^{7 \over 2})|_{0}^{1}=2({2 \over 15}+{2 \over 7})={88 \over 105}.}
Galime pabandyti šį pavyzdį išspręsti polinėje koordinačių sistemoje. Pereidami į polinę koordinačių sistemą gauname parabolės lygtį
ρ
sin
ϕ
=
ρ
2
cos
2
ϕ
,
{\displaystyle \rho \sin \phi =\rho ^{2}\cos ^{2}\phi ,}
sin
ϕ
=
ρ
cos
2
ϕ
,
{\displaystyle \sin \phi =\rho \cos ^{2}\phi ,}
ρ
=
sin
ϕ
cos
2
ϕ
=
tan
ϕ
cos
ϕ
,
{\displaystyle \rho ={\frac {\sin \phi }{\cos ^{2}\phi }}={\frac {\tan \phi }{\cos \phi }},}
ir paraboloido lygtį
z
=
ρ
2
{\displaystyle z=\rho ^{2}}
. Surasime tūrį:
V
=
∬
D
(
x
2
+
y
2
)
d
x
d
y
=
∬
D
ρ
2
ρ
d
ρ
d
ϕ
=
2
∫
0
π
2
d
ϕ
∫
0
sin
ϕ
cos
2
ϕ
ρ
2
ρ
d
ρ
=
{\displaystyle V=\iint _{D}(x^{2}+y^{2}){\mathsf {d}}x{\mathsf {d}}y=\iint _{D}\rho ^{2}\rho \;{\mathsf {d}}\rho {\mathsf {d}}\phi =2\int _{0}^{\pi \over 2}{\mathsf {d}}\phi \int _{0}^{\frac {\sin \phi }{\cos ^{2}\phi }}\rho ^{2}\rho \;{\mathsf {d}}\rho =}
=
2
∫
0
π
2
d
ϕ
∫
0
sin
ϕ
cos
2
ϕ
ρ
3
d
ρ
=
2
∫
0
π
2
d
ϕ
ρ
4
4
|
0
sin
ϕ
cos
2
ϕ
=
2
∫
0
π
2
1
4
⋅
[
(
sin
ϕ
cos
2
ϕ
)
4
−
0
4
]
d
ϕ
=
1
2
∫
0
π
2
sin
4
ϕ
cos
8
ϕ
d
ϕ
=
{\displaystyle =2\int _{0}^{\pi \over 2}{\mathsf {d}}\phi \int _{0}^{\frac {\sin \phi }{\cos ^{2}\phi }}\rho ^{3}{\mathsf {d}}\rho =2\int _{0}^{\pi \over 2}{\mathsf {d}}\phi \;{\frac {\rho ^{4}}{4}}|_{0}^{\frac {\sin \phi }{\cos ^{2}\phi }}=2\int _{0}^{\pi \over 2}{\frac {1}{4}}\cdot \left[\left({\frac {\sin \phi }{\cos ^{2}\phi }}\right)^{4}-0^{4}\right]{\mathsf {d}}\phi ={\frac {1}{2}}\int _{0}^{\pi \over 2}{\frac {\sin ^{4}\phi }{\cos ^{8}\phi }}{\mathsf {d}}\phi =}
=
1
2
(
sin
4
−
1
π
2
1
⋅
(
8
−
1
)
cos
8
−
1
π
2
−
sin
4
−
1
(
0
)
1
⋅
(
8
−
1
)
cos
8
−
1
(
0
)
)
−
1
2
⋅
4
−
1
8
−
1
∫
0
π
2
sin
4
−
1
(
ϕ
)
cos
8
−
2
(
ϕ
)
d
ϕ
=
{\displaystyle ={\frac {1}{2}}\left({\frac {\sin ^{4-1}{\frac {\pi }{2}}}{1\cdot (8-1)\cos ^{8-1}{\frac {\pi }{2}}}}-{\frac {\sin ^{4-1}(0)}{1\cdot (8-1)\cos ^{8-1}(0)}}\right)-{\frac {1}{2}}\cdot {\frac {4-1}{8-1}}\int _{0}^{\pi \over 2}{\frac {\sin ^{4-1}(\phi )}{\cos ^{8-2}(\phi )}}{\mathsf {d}}\phi =}
=
1
2
⋅
sin
3
π
2
7
cos
7
π
2
−
1
2
⋅
3
7
∫
0
π
2
sin
3
(
ϕ
)
cos
6
(
ϕ
)
d
ϕ
=
1
4
⋅
sin
3
π
7
cos
7
π
−
1
4
⋅
3
7
∫
0
π
sin
3
(
ϕ
)
cos
6
(
ϕ
)
d
ϕ
=
{\displaystyle ={\frac {1}{2}}\cdot {\frac {\sin ^{3}{\frac {\pi }{2}}}{7\cos ^{7}{\frac {\pi }{2}}}}-{\frac {1}{2}}\cdot {\frac {3}{7}}\int _{0}^{\pi \over 2}{\frac {\sin ^{3}(\phi )}{\cos ^{6}(\phi )}}{\mathsf {d}}\phi ={\frac {1}{4}}\cdot {\frac {\sin ^{3}\pi }{7\cos ^{7}\pi }}-{\frac {1}{4}}\cdot {\frac {3}{7}}\int _{0}^{\pi }{\frac {\sin ^{3}(\phi )}{\cos ^{6}(\phi )}}{\mathsf {d}}\phi =}
=
1
4
⋅
0
3
7
⋅
1
7
−
3
28
∫
0
π
sin
3
(
ϕ
)
cos
6
(
ϕ
)
d
ϕ
=
−
3
28
∫
0
π
sin
3
(
ϕ
)
cos
6
(
ϕ
)
d
ϕ
=
{\displaystyle ={\frac {1}{4}}\cdot {\frac {0^{3}}{7\cdot 1^{7}}}-{\frac {3}{28}}\int _{0}^{\pi }{\frac {\sin ^{3}(\phi )}{\cos ^{6}(\phi )}}{\mathsf {d}}\phi =-{\frac {3}{28}}\int _{0}^{\pi }{\frac {\sin ^{3}(\phi )}{\cos ^{6}(\phi )}}{\mathsf {d}}\phi =}
=
−
3
28
[
1
(
6
−
1
)
cos
6
−
1
(
π
)
−
1
(
6
−
3
)
cos
6
−
3
(
π
)
]
−
(
−
3
28
)
[
1
(
6
−
1
)
cos
6
−
1
(
0
)
−
1
(
6
−
3
)
cos
6
−
3
(
0
)
]
=
{\displaystyle =-{\frac {3}{28}}\left[{\frac {1}{(6-1)\cos ^{6-1}(\pi )}}-{\frac {1}{(6-3)\cos ^{6-3}(\pi )}}\right]-\left(-{\frac {3}{28}}\right)\left[{\frac {1}{(6-1)\cos ^{6-1}(0)}}-{\frac {1}{(6-3)\cos ^{6-3}(0)}}\right]=}
=
−
3
28
[
1
5
cos
5
(
π
)
−
1
3
cos
3
(
π
)
]
+
3
28
[
1
5
cos
5
(
0
)
−
1
3
cos
3
(
0
)
]
=
−
3
28
[
1
5
⋅
(
−
1
)
5
−
1
3
⋅
(
−
1
)
3
]
+
3
28
[
1
5
⋅
1
5
−
1
3
⋅
1
3
]
=
{\displaystyle =-{\frac {3}{28}}\left[{\frac {1}{5\cos ^{5}(\pi )}}-{\frac {1}{3\cos ^{3}(\pi )}}\right]+{\frac {3}{28}}\left[{\frac {1}{5\cos ^{5}(0)}}-{\frac {1}{3\cos ^{3}(0)}}\right]=-{\frac {3}{28}}\left[{\frac {1}{5\cdot (-1)^{5}}}-{\frac {1}{3\cdot (-1)^{3}}}\right]+{\frac {3}{28}}\left[{\frac {1}{5\cdot 1^{5}}}-{\frac {1}{3\cdot 1^{3}}}\right]=}
=
−
3
28
[
−
1
5
+
1
3
]
+
3
28
[
1
5
−
1
3
]
=
−
3
28
⋅
−
3
+
5
15
+
3
28
⋅
3
−
5
15
=
−
3
28
⋅
2
15
+
3
28
⋅
−
2
15
=
{\displaystyle =-{\frac {3}{28}}\left[-{\frac {1}{5}}+{\frac {1}{3}}\right]+{\frac {3}{28}}\left[{\frac {1}{5}}-{\frac {1}{3}}\right]=-{\frac {3}{28}}\cdot {\frac {-3+5}{15}}+{\frac {3}{28}}\cdot {\frac {3-5}{15}}=-{\frac {3}{28}}\cdot {\frac {2}{15}}+{\frac {3}{28}}\cdot {\frac {-2}{15}}=}
=
−
1
14
⋅
1
5
+
1
14
⋅
−
1
5
=
−
1
70
−
1
70
=
−
2
70
=
−
1
35
=
−
0.028571428.
{\displaystyle =-{\frac {1}{14}}\cdot {\frac {1}{5}}+{\frac {1}{14}}\cdot {\frac {-1}{5}}=-{\frac {1}{70}}-{\frac {1}{70}}=-{\frac {2}{70}}=-{\frac {1}{35}}=-0.028571428.}
kur
∫
sin
n
(
a
x
)
cos
m
(
a
x
)
d
x
=
sin
n
−
1
(
a
x
)
a
(
m
−
1
)
cos
m
−
1
(
a
x
)
−
n
−
1
m
−
1
∫
sin
n
−
1
(
a
x
)
cos
m
−
2
(
a
x
)
d
x
(
m
≠
1
)
;
{\displaystyle \int {\frac {\sin ^{n}(ax)}{\cos ^{m}(ax)}}{\mathsf {d}}x={\frac {\sin ^{n-1}(ax)}{a(m-1)\cos ^{m-1}(ax)}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-1}(ax)}{\cos ^{m-2}(ax)}}{\mathsf {d}}x\quad (m\neq 1);}
∫
sin
3
(
a
x
)
cos
n
(
a
x
)
d
x
=
1
a
[
1
(
n
−
1
)
cos
n
−
1
(
a
x
)
−
1
(
n
−
3
)
cos
n
−
3
(
a
x
)
]
(
n
≠
1
,
n
≠
3
)
.
{\displaystyle \int {\frac {\sin ^{3}(ax)}{\cos ^{n}(ax)}}{\mathsf {d}}x={\frac {1}{a}}\left[{\frac {1}{(n-1)\cos ^{n-1}(ax)}}-{\frac {1}{(n-3)\cos ^{n-3}(ax)}}\right]\quad (n\neq 1,\;\;n\neq 3).}
Internetinis integratorius http://integrals.wolfram.com/index.jsp?expr=%28%28Sin%28x%29%29%5E4%29%2F%28%28cos%28x%29%29%5E8%29&random=false duoda tokį atsakymą:
∫
sin
4
(
x
)
cos
8
(
x
)
d
x
=
1
35
(
cos
(
2
x
)
+
6
)
tan
5
(
x
)
sec
2
(
x
)
=
1
35
(
cos
(
2
x
)
+
6
)
tan
5
(
x
)
cos
2
(
x
)
=
1
35
(
cos
(
2
x
)
+
6
)
sin
5
x
cos
7
x
.
{\displaystyle \int {\frac {\sin ^{4}(x)}{\cos ^{8}(x)}}{\mathsf {d}}x={\frac {1}{35}}(\cos(2x)+6)\tan ^{5}(x)\sec ^{2}(x)={\frac {1}{35}}(\cos(2x)+6){\frac {\tan ^{5}(x)}{\cos ^{2}(x)}}={\frac {1}{35}}(\cos(2x)+6){\frac {\sin ^{5}x}{\cos ^{7}x}}.}
Gauname tūrį:
V
=
2
1
35
(
cos
(
2
x
)
+
6
)
sin
5
x
cos
7
x
|
0
π
2
=
2
35
(
cos
(
2
⋅
π
2
)
+
6
)
sin
5
π
2
cos
7
π
2
−
2
35
(
cos
(
2
⋅
π
2
)
+
6
)
sin
5
π
2
cos
7
π
2
=
{\displaystyle V=2{\frac {1}{35}}(\cos(2x)+6){\frac {\sin ^{5}x}{\cos ^{7}x}}|_{0}^{\pi \over 2}={\frac {2}{35}}(\cos(2\cdot {\frac {\pi }{2}})+6){\frac {\sin ^{5}{\frac {\pi }{2}}}{\cos ^{7}{\frac {\pi }{2}}}}-{\frac {2}{35}}(\cos(2\cdot {\frac {\pi }{2}})+6){\frac {\sin ^{5}{\frac {\pi }{2}}}{\cos ^{7}{\frac {\pi }{2}}}}=}
=
2
35
(
cos
(
π
)
+
6
)
1
5
0
7
−
2
35
(
cos
(
π
)
+
6
)
1
5
0
7
;
{\displaystyle ={\frac {2}{35}}(\cos(\pi )+6){\frac {1^{5}}{0^{7}}}-{\frac {2}{35}}(\cos(\pi )+6){\frac {1^{5}}{0^{7}}};}
V
=
1
35
(
cos
(
2
x
)
+
6
)
sin
5
x
cos
7
x
|
0
π
=
2
35
(
cos
(
2
π
)
+
6
)
sin
5
π
cos
7
π
−
2
35
(
cos
(
2
π
)
+
6
)
sin
5
π
cos
7
π
=
{\displaystyle V={\frac {1}{35}}(\cos(2x)+6){\frac {\sin ^{5}x}{\cos ^{7}x}}|_{0}^{\pi }={\frac {2}{35}}(\cos(2\pi )+6){\frac {\sin ^{5}\pi }{\cos ^{7}\pi }}-{\frac {2}{35}}(\cos(2\pi )+6){\frac {\sin ^{5}\pi }{\cos ^{7}\pi }}=}
=
2
35
(
1
+
6
)
0
5
(
−
1
)
7
−
2
35
(
1
+
6
)
0
5
(
−
1
)
7
=
0.
{\displaystyle ={\frac {2}{35}}(1+6){\frac {0^{5}}{(-1)^{7}}}-{\frac {2}{35}}(1+6){\frac {0^{5}}{(-1)^{7}}}=0.}
Vadinasi uždavinys negali būti išsprestas polinėje koordinačių sistemoje.