Binomo formulė – dažnai dar vadinama Niutono formule , yra svarbi matematikos teorema, padedanti rasti dvinario , pakelto n -tuoju laipsniu, skleidinį. Teorema dažniausiai yra užrašoma
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
{\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{n \choose k}a^{n-k}b^{k}}
arba
(
a
+
b
)
n
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
{\displaystyle (a+b)^{n}={n \choose 0}a^{n}+{n \choose 1}a^{n-1}b+\dots +{n \choose k}a^{n-k}b^{k}+\dots +{n \choose n}b^{n}}
Skaičiai
(
n
k
)
=
n
!
k
!
⋅
(
n
−
k
)
!
=
C
n
k
{\displaystyle {n \choose k}={n! \over {k!\cdot (n-k)!}}=C_{n}^{k}}
yra vadinami binomo koeficientais ir yra lygūs skaičiams iš atitinkamos Paskalio trikampio eilutės.
Arba
(
a
+
b
)
n
=
C
n
0
a
n
b
0
+
C
n
1
a
n
−
1
b
1
+
C
n
2
a
n
−
2
b
2
+
C
n
3
a
n
−
3
b
3
+
.
.
.
+
C
n
m
a
n
−
m
b
m
+
.
.
.
+
C
n
n
−
1
a
1
b
n
−
1
+
C
n
n
a
0
b
n
,
{\displaystyle (a+b)^{n}=C_{n}^{0}a^{n}b^{0}+C_{n}^{1}a^{n-1}b^{1}+C_{n}^{2}a^{n-2}b^{2}+C_{n}^{3}a^{n-3}b^{3}+...+C_{n}^{m}a^{n-m}b^{m}+...+C_{n}^{n-1}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n},}
kur
C
n
k
{\displaystyle C_{n}^{k}}
yra deriniai . Jei
(
a
−
b
)
n
{\displaystyle (a-b)^{n}}
, tada bus tai minusas tai pliusas, pradedant nuo minuso, pvz:
(
a
−
b
)
5
=
C
5
0
a
5
−
C
5
1
a
4
b
+
C
5
2
a
3
b
2
−
C
5
3
a
2
b
3
+
C
5
4
a
b
4
−
C
5
5
b
5
{\displaystyle (a-b)^{5}=C_{5}^{0}a^{5}-C_{5}^{1}a^{4}b+C_{5}^{2}a^{3}b^{2}-C_{5}^{3}a^{2}b^{3}+C_{5}^{4}ab^{4}-C_{5}^{5}b^{5}}
Niutono formulė gali būti užrašyta dar taip:
(
a
+
b
)
n
=
a
n
+
n
a
n
−
1
b
+
n
(
n
−
1
)
2
!
a
n
−
2
b
2
+
n
(
n
−
1
)
(
n
−
2
)
3
!
a
n
−
3
b
3
+
.
.
.
+
n
(
n
−
1
)
(
n
−
2
)
.
.
.
(
n
−
m
+
1
)
m
!
a
n
−
m
b
m
+
.
.
.
+
n
a
b
n
−
1
+
b
n
.
{\displaystyle (a+b)^{n}=a^{n}+na^{n-1}b+{\frac {n(n-1)}{2!}}a^{n-2}b^{2}+{\frac {n(n-1)(n-2)}{3!}}a^{n-3}b^{3}+...+{\frac {n(n-1)(n-2)...(n-m+1)}{m!}}a^{n-m}b^{m}+...+nab^{n-1}+b^{n}.}
Skirtumo laipsnis:
(
a
−
b
)
n
=
a
n
−
n
a
n
−
1
b
+
n
(
n
−
1
)
2
!
a
n
−
2
b
2
−
n
(
n
−
1
)
(
n
−
2
)
3
!
a
n
−
3
b
3
+
.
.
.
+
(
−
1
)
m
n
(
n
−
1
)
(
n
−
2
)
.
.
.
(
n
−
m
+
1
)
m
!
a
n
−
m
b
m
+
.
.
.
+
(
−
1
)
n
b
n
.
{\displaystyle (a-b)^{n}=a^{n}-na^{n-1}b+{\frac {n(n-1)}{2!}}a^{n-2}b^{2}-{\frac {n(n-1)(n-2)}{3!}}a^{n-3}b^{3}+...+(-1)^{m}{\frac {n(n-1)(n-2)...(n-m+1)}{m!}}a^{n-m}b^{m}+...+(-1)^{n}b^{n}.}
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}}
(
a
+
b
)
3
=
a
3
+
3
a
2
b
+
3
a
b
2
+
b
3
{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}}
(
a
−
b
)
3
=
a
3
−
3
a
2
b
+
3
a
b
2
−
b
3
{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}}
Pastaba,
0
!
=
1.
{\displaystyle 0!=1.}
Penktos eilės Niutono binomo formulė yra tokia:
(
a
−
b
)
5
=
C
5
0
a
5
−
C
5
1
a
4
b
+
C
5
2
a
3
b
2
−
C
5
3
a
2
b
3
+
C
5
4
a
b
4
−
C
5
5
b
5
=
{\displaystyle (a-b)^{5}=C_{5}^{0}a^{5}-C_{5}^{1}a^{4}b+C_{5}^{2}a^{3}b^{2}-C_{5}^{3}a^{2}b^{3}+C_{5}^{4}ab^{4}-C_{5}^{5}b^{5}=}
=
5
!
0
!
⋅
(
5
−
0
)
!
a
5
−
5
!
1
!
⋅
(
5
−
1
)
!
a
4
b
+
5
!
2
!
⋅
(
5
−
2
)
!
a
3
b
2
−
5
!
3
!
⋅
(
5
−
3
)
!
a
2
b
3
+
5
!
4
!
⋅
(
5
−
4
)
!
a
b
4
−
5
!
5
!
⋅
(
5
−
5
)
!
b
5
=
{\displaystyle ={5! \over {0!\cdot (5-0)!}}a^{5}-{5! \over {1!\cdot (5-1)!}}a^{4}b+{5! \over {2!\cdot (5-2)!}}a^{3}b^{2}-{5! \over {3!\cdot (5-3)!}}a^{2}b^{3}+{5! \over {4!\cdot (5-4)!}}ab^{4}-{5! \over {5!\cdot (5-5)!}}b^{5}=}
=
5
!
1
⋅
5
!
a
5
−
5
a
4
b
+
5
!
2
!
⋅
3
!
a
3
b
2
−
5
⋅
4
⋅
3
3
⋅
2
a
2
b
3
+
5
!
4
!
a
b
4
−
5
!
5
!
⋅
0
!
b
5
=
{\displaystyle ={5! \over {1\cdot 5!}}a^{5}-5a^{4}b+{5! \over {2!\cdot 3!}}a^{3}b^{2}-{5\cdot 4\cdot 3 \over {3\cdot 2}}a^{2}b^{3}+{5! \over 4!}ab^{4}-{5! \over {5!\cdot 0!}}b^{5}=}
=
a
5
−
5
a
4
b
+
5
⋅
4
2
a
3
b
2
−
5
⋅
2
a
2
b
3
+
5
a
b
4
−
b
5
=
{\displaystyle =a^{5}-5a^{4}b+{5\cdot 4 \over 2}a^{3}b^{2}-5\cdot 2a^{2}b^{3}+5ab^{4}-b^{5}=}
=
a
5
−
5
a
4
b
+
10
a
3
b
2
−
10
a
2
b
3
+
5
a
b
4
−
b
5
.
{\displaystyle =a^{5}-5a^{4}b+10a^{3}b^{2}-10a^{2}b^{3}+5ab^{4}-b^{5}.}
Užrašysime ketvirto laipsnio Niutono binomo formulę:
(
a
−
b
)
4
=
C
4
0
a
4
b
0
−
C
4
1
a
3
b
+
C
4
2
a
2
b
2
−
C
4
3
a
b
3
+
C
4
4
a
0
b
4
=
{\displaystyle (a-b)^{4}=C_{4}^{0}a^{4}b^{0}-C_{4}^{1}a^{3}b+C_{4}^{2}a^{2}b^{2}-C_{4}^{3}ab^{3}+C_{4}^{4}a^{0}b^{4}=}
=
4
!
0
!
(
4
−
0
)
!
a
4
b
0
−
4
!
1
!
(
4
−
1
)
!
a
3
b
+
4
!
2
!
(
4
−
2
)
!
a
2
b
2
−
4
!
3
!
(
4
−
3
)
!
a
b
3
+
4
!
4
!
(
4
−
4
)
!
a
0
b
4
=
{\displaystyle ={\frac {4!}{0!(4-0)!}}a^{4}b^{0}-{\frac {4!}{1!(4-1)!}}a^{3}b+{\frac {4!}{2!(4-2)!}}a^{2}b^{2}-{\frac {4!}{3!(4-3)!}}ab^{3}+{\frac {4!}{4!(4-4)!}}a^{0}b^{4}=}
=
4
!
4
!
a
4
−
4
!
3
!
a
3
b
+
4
!
2
!
⋅
2
!
a
2
b
2
−
4
!
3
!
a
b
3
+
4
!
4
!
b
4
=
{\displaystyle ={\frac {4!}{4!}}a^{4}-{\frac {4!}{3!}}a^{3}b+{\frac {4!}{2!\cdot 2!}}a^{2}b^{2}-{\frac {4!}{3!}}ab^{3}+{\frac {4!}{4!}}b^{4}=}
=
a
4
−
4
a
3
b
+
4
⋅
3
⋅
2
4
a
2
b
2
−
4
a
b
3
+
b
4
=
{\displaystyle =a^{4}-4a^{3}b+{\frac {4\cdot 3\cdot 2}{4}}a^{2}b^{2}-4ab^{3}+b^{4}=}
=
a
4
−
4
a
3
b
+
6
a
2
b
2
−
4
a
b
3
+
b
4
.
{\displaystyle =a^{4}-4a^{3}b+6a^{2}b^{2}-4ab^{3}+b^{4}.}
Patikriname, kai a=6, b=2,
(
a
−
b
)
4
=
(
6
−
2
)
4
=
4
4
=
256
;
{\displaystyle (a-b)^{4}=(6-2)^{4}=4^{4}=256;}
a
4
−
4
a
3
b
+
6
a
2
b
2
−
4
a
b
3
+
b
4
=
6
4
−
4
⋅
6
3
⋅
2
+
6
⋅
6
2
⋅
2
2
−
4
⋅
6
⋅
2
3
+
2
4
=
{\displaystyle a^{4}-4a^{3}b+6a^{2}b^{2}-4ab^{3}+b^{4}=6^{4}-4\cdot 6^{3}\cdot 2+6\cdot 6^{2}\cdot 2^{2}-4\cdot 6\cdot 2^{3}+2^{4}=}
=
1296
−
4
⋅
216
⋅
2
+
6
⋅
36
⋅
4
−
4
⋅
6
⋅
8
+
16
=
1296
−
1728
+
864
−
192
+
16
=
256.
{\displaystyle =1296-4\cdot 216\cdot 2+6\cdot 36\cdot 4-4\cdot 6\cdot 8+16=1296-1728+864-192+16=256.}