Sekos riba

Iš Wikibooks.


3. Monotoninės sekos[keisti]

1. Monotoninių sekų apibrėžimas.[keisti]

Apibrėžimas. Seka vadinama nemažėjančia (nedidėjančia), jei kiekvienas tos sekos elementas ne mažesnis (ne didesnis) už pirmesnįjį elementą, t. y., jei su visais numeriais n teisinga nelygybė
().
Nemažėjančios ir nedidėjančios sekos vadinamos monotoninėmis sekomis. Jei monotoninės sekos elementai su bet kuriuo numeriu n tenkina nelygybę (), tai seka vadinama didėjančia (mažėjančia). Didėjančios ir mažėjančios sekos dar vadinamos griežtai monotoninėmis sekomis.
Monotoninės sekos yra aprėžtos arba iš viršaus, arba iš apačios; būtent, nedidėjančios sekos aprėžtos iš viršaus, o nemažėjančios aprėžtos iš apačios pirmaisiais savo elementais. Todėl nedidėjanti seka yra aprėžta iš abiejų pusių, kai ji aprėžta iš apačios, o nemažėjanti seka yra aprėžta iš abiejų pusių, kai ji aprėžta iš viršaus.
Pateiksime tris monotoninių sekų pavyzdžius.
1. Seka nedidėjanti. Ji aprėžta iš viršaus savo pirmuoju elementu, lygiu vienetui, o iš apačios - skaičiumi 0.
2. Seka nemažėjanti. Ji aprėžta iš apačios savo pirmuoju elementu, o iš viršaus neaprėžta.
3. Seka didėjanti. Ji aprėžta iš abiejų pusių: iš apačios pirmuoju elementu iš viršaus, pavyzdžiui, skaičiumi 1.

2. Monotoninės sekos konvergavimo požymis.[keisti]

Įrodysime pagrindinę teoremą.
3.15 teorema. Jei nemažėjanti (nedidėjanti) seka aprėžta iš viršaus (iš apačios), tai ji konverguoja.
Pagal praeitą skirsnį seka atitinkanti 3.15 teoremos sąlygas, yra aprėžta. Todėl 3.15 teoremą galima trumpai formuluoti taip: jei monotoninė seka yra aprėžta iš abiejų pusių, tai ji konverguoja.
Įrodymas. Kadangi seka yra aprėžta, tai jos elementų aibė turi tikslųjį viršutinį rėžį ir tikslųjį apatinį rėžį Įrodysime štai ką: jei – nemažėjanti seka, tai jos riba yra minėtasis tikslusis viršutinis rėžis; jei – nedidėjanti seka, tai jos riba yra minėtasis tikslusis apatinis rėžis Išnagrinėsime tik nemažėjančią seką, nes samprotavimai apie nedidėjančią seką būtų analogiški.
Kadangi yra sekos elementų aibės tikslusis viršutinis rėžis, tai kiekvieną atitinka toks elementas kad ir (bet koks elementas ne didesnis už tikslųjį viršutinį rėžį t. y. ). Iš šitų nelygybių gauname nelygybes Kadangi – nemažėjanti seka, tai nelygybės yra teisingos, kai Iš to išplaukia, kad kai Anksčiau pabrėžėme, kad todėl, kai teisingos nelygybės iš kurių gauname nelygybę Vadinasi, įsitikinome, kad yra sekos riba. Teorema įrodyta.
1 pastaba. Monotoninės sekos aprėžtumas yra būtinas ir pakankamas jos konvergavimo požymis.
Iš tikrųjų, jei monotoninė seka yra aprėžta, tai pagal 3.15 teoremą ji konverguoja; jei monotoninė seka konverguoja, tai, remiantis 3.8 teorema, ji yra aprėžta.
2 pastaba. Konverguojanti seka gali ir nebūti monotoninė. Pavyzdžiui, seka apibrėžta formule konverguoja, o jos riba yra skaičius 0. Tačiau ši seka nėra monotoninė, nes po teigiamo elemento eina neigiamas, o po neigiamo – teigiamas.
3 pastaba. Jei yra nemažėjanti ir aprėžta seka, o – tos sekos riba, tai visi jos elementai tenkina nelygybę Nedidėjančios ir aprėžtos sekos konverguojančios į elementai tenkina nelygybę Kad šie teiginiai teisingi, įsitikinome, įrodinėdami 3.15 teoremą.
3.15 teoremos išvada. Sakykime, duota begalinė segmentų sistema Jei kiekvienas segmentas yra pirmesniajame*, o skirtumas (jį vadinsime segmento ilgiu) artėja prie nulio, kai (segmentų sistemą, turinčią šią savybę, vadinsime susitraukiančia), tai egzistuoja vienintelis taškas c, priklausantis visiems tos sistemos segmentams.
Įrodymas. Pirmiausia pastebėsime, kad taškas c, priklausantis visiems segmentams, gali būti tik vienas. Iš tikrųjų, jei būtų dar vienas taškas d, priklausantis visiems segmentams, tai segmentas ** [c; d] priklausytų visiems segmentams Bet tokiu atveju su bet kokiu numeriu n būtų teisingos nelygybės tai neįmanoma, nes kai Dabar įsitikinsime, kad taškas c, priklausantis visiems segmentams egzistuoja. Kadangi segmentų sistema yra susitraukianti, tai kairiųjų galų seka yra nemažėjanti, o dešiniųjų galų seka – nedidėjanti. Kadangi abi tos sekos yra aprėžtos (visi sekų ir elementai priklauso segmentui ), tai pagal 3.15 teoremą jos konverguoja. Iš to, kad skirtumas nyksta, išplaukia, jog minimosios sekos turi bendrą ribą. Tą ribą žymėkime raide c. Remiantis 3 pastaba, su bet kokiu numeriu n teisingos šios nelygybės: t. y. taškas c priklauso visiems segmentams

_______________

* Tai reiškia, kad
** Siekdami konkretumo, tariame, kad d > c.

3. Keli konverguojančių monotoninių sekų pavyzdžiai.[keisti]

Išnagrinėsime kelias sekas, kurių ribas apskaičiuosime, remdamiesi 3.15 teorema apie monotoninės sekos ribą. Be to, šiame skirsnyje susipažinsime su vienu bendru sekos ribos ieškojimo metodu, kai seka apibrėžiama rekurentine formule (Rekurentinė formulė (lot. recurrens – grįžtas) – formulė, pagal kurią -ąjį sekos elementą galima išreikšti jos pirmųjų n elementų reikšmėmis.).
1 pavyzdys. Tirsime seką kurios elementas lygus
(n radikalų). Tą pačią seką galima, savaime aišku, nusakyti šitokia rekurentine formule:
Norėdami įsitikinti, kad sekos riba egzistuoja, įrodysime, jog ta seka yra didėjanti ir aprėžta. Kad ta seka didėja, matyti tiesiog. Įsitikinsime, kad seka aprėžta iš viršaus skaičiumi A, kai A – didedsnysis iš dviejų skaičių a ir 2. Jei tai teiginys jau įrodytas. Jei tai, dešinėje nelygybės pusėje skaičių a pakeitę didesniu už jį skaičiumi gauname o iš čia Taigi įrodėme, kad seka aprėžta iš viršaus. Pagal 3.15 teoremą ta seka turi ribą. Pažymėkime tą ribą raide c. Savaime aišku, Iš rekurentinės formulės turime lygybę
iš kurios matyti, kad sekos ir sutampa. Todėl jos turi bendrą ribą. Kadangi pirmosios sekos riba lygi o antrosios (kai n varo į begalybę skaičiams ir tai praktiškai nesiskiria nuo ir abu yra labai arti c reikšmės (abu labai panašūs į c)), tai Iš čia, turėdami mintyje, kad randame c:
kadangi tai
2 pavyzdys. Tirsime seką kuria dažniausiai naudojamasi, apskaičiuojant teigiamo skaičiaus a kvadratinę šankį elektronine skaičiavimo mašina. Šita seka apibrėžiama tokia rekurentine formule:
Pirmuoju elementu čia galima laikyti bet kokį teigiamą skaičių.
Įrodysime, kad ta seka konverguoja, o jos riba yra skaičius Pirmiausia įsitikinsime, kad seka turi ribą. Tam užtenka įrodyti, kad seka yra aprėžta iš apačios ir kad, pradedant antruoju elementu, ji nedidėja. Iš pradžių įsitikinsime, kad seka aprėžta iš apačios. Sąlygoje pasakyta, jog o iš rekurentinės formulės, kai gauname Taip samprotaudami toliau, įsitikiname, kad visi yra teigiami.
Dabar įrodysime, kad visi kai tenkina nelygybę Parašę rekurentinę formulę šitaip: remsimės beveik savaime aiškia nelygybe *, kuri teisinga, kai (imame ). Gausime
kai t. y. pradedant numeriu
Pagaliau įsitikinsime, kad seka kai nedidėja. Iš rekurentinės formulės matome, kad o iš čia, turėdami mintyje, kad gauname arba (kai ).
Kadangi seka kai nedidėja ir yra aprėžta iš apačios skaičiumi (nes ), tai ji turi ribą, ne mažesnę kaip (žr. 3.15 ir 3.13 teoremą). Tą ribą pažymėkime raide c ir atsižvelgę į tai, kad o gauname lygybę
**,
Vadinasi,
1 pastaba. Spręsdami pateiktuosius pavyzdžius, naudojomės plačiai taikomu metodu sekos ribai skaičiuoti. Metodo esmė: iš pradžių įsitikinama, kad sekos riba egzistuoja, o paskui iš lygties, kuri gaunama iš rekurentinės formulės, vietoje ir įrašius ieškomąją sekos ribos reikšmę c, apskaičiuojama tos ribos skaitinė reikšmė.
2 pastaba. Rekurentinės formulės dažnai naudojamos skaičiavimo matematikoje, nes jas taikant daug kartų, atliekamos to paties tipo skaičiavimo operacijos, o tai labai patogu skaičiuojant elektroninėmis skaičiavimo mašinomis.
Išnagrinėtoji rekurentinė formulė aprašo, kaip įsitikinome, skaičiavimo algoritmą (įrodėme, kad ).
Vėliau bus tiriamas sekos konvergavimo į greitis. Įrodoma, kad, tinkamai pasirinkus pirmąjį artinį kai jau ketvirtasis artinys nuo skaičiaus skiriasi mažiau kaip
3 pavyzdys. Įsitikinsime, kad sekos kai o x – bet koks fiksuotas skaičius, riba lygi nuliui. Kai n – pakankamai didelis natūralusis skaičius, Todėl, pradedant kuriuo nors numeriu N, turi būti nes
Vadinasi, pradedant numeriu N, seka mažėja. Kadangi, be to, ji aprėžta iš apačios (pavyzdžiui nuliu), tai pagal 3.15 teoremą seka konverguoja. Tarkime, kad c yra tos sekos riba. Iš lygybės išplaukia, kad nes sekos riba lygi c, o sekos – nuliui.

_____________________

* Tą nelygybę įrodinėjant, užtenka pastebėti, kad, kai ji ekvivalenti nelygybei
** Ta lygybė gaunama iš rekurentinės formulės